organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,4-Di­methyl­pyridinium iodide

CROSSMARK_Color_square_no_text.svg

a325 Science Center, Fredonia State University of New York, Fredonia 14063, USA
*Correspondence e-mail: cardenas@fredonia.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 February 2017; accepted 16 February 2017; online 21 February 2017)

The title organic salt, C7H10N+·I, was synthesized from a mixture of 4-methyl­pyridine and iodo­methane in 2-propanol. It crystallized with three independent 1,4-di­methyl­pyridinium cations and three independent iodide anions in the asymmetric unit. In the crystal, there are no significant inter­molecular inter­actions present.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title organic salt was synthesized from a mixture of 4-methyl­pyridine and iodo­methane in 2-propanol. It crystallized with three independent 1,4-di­methyl­pyridinium cations and three independent iodide anions in the asymmetric unit (Fig. 1[link]). In the crystal (Fig. 2[link]), there are no significant inter­molecular inter­actions present. The H⋯I distances vary between ca 3.06 and 3.16 Å.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labeling and 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound (color code: I = violet balls, cation A = blue, cation B = red, and cation C = green).

The crystal structures of the triiodide (Tan et al., 2005[Tan, X.-J., Sun, S.-X., Liu, S.-L., Ma, J.-P. & Xing, D.-X. (2005). Acta Cryst. E61, o756-o757.]) and the hepta­iodide (Herbstein et al., 1985[Herbstein, F. H., Reisner, G. M. & Schwotzer, W. (1985). J. Inclusion Phenom. 3, 173-182.]) salts of 1,4-di­methyl­pyridinium have been reported.

Synthesis and crystallization

The title mol­ecular salt was synthesized (Ault, 1997[Ault, A. (1997). Techniques and Experiments for Organic Chemistry, 5th ed., pp. 509-511. Prospect Heights, USA: Waveland Press.]) from a mixture of 4-methyl­pyridine (0.10 mol, 10.0 mL) and iodo­methane (0.10 mol, 6.2 mL) in 2-propanol (20 mL) (Fig. 3[link]). The solution was heated to 323 K using a water bath to initiate the reaction. Upon reaching 323 K, the solution was removed from the water bath and allowed to cool to room temperature. After 30 min, the colorless block-like crystals that formed were collected by vacuum filtration (yield: 21.0 g, 89%).

[Figure 3]
Figure 3
Synthesis of the title organic salt.

Refinement

Crystal data, data collection and refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C7H10N+·I
Mr 235.06
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 13.8301 (6), 19.7170 (9), 10.2121 (5)
β (°) 109.642 (1)
V3) 2622.7 (2)
Z 12
Radiation type Mo Kα
μ (mm−1) 3.59
Crystal size (mm) 0.5 × 0.5 × 0.3
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.476, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 16106, 5933, 5401
Rint 0.019
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.048, 1.14
No. of reflections 5933
No. of parameters 251
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.49
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,4-Dimethylpyridinium iodide top
Crystal data top
C7H10N+·IF(000) = 1344
Mr = 235.06Dx = 1.786 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.8301 (6) ÅCell parameters from 9919 reflections
b = 19.7170 (9) Åθ = 3.0–27.9°
c = 10.2121 (5) ŵ = 3.59 mm1
β = 109.642 (1)°T = 150 K
V = 2622.7 (2) Å3Block, clear colourless
Z = 120.5 × 0.5 × 0.3 mm
Data collection top
Bruker APEX-II CCD
diffractometer
5401 reflections with I > 2σ(I)
φ and ω scansRint = 0.019
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 27.9°, θmin = 3.0°
Tmin = 0.476, Tmax = 0.746h = 1816
16106 measured reflectionsk = 2522
5933 independent reflectionsl = 1013
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.013P)2 + 2.567P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max = 0.002
S = 1.14Δρmax = 0.51 e Å3
5933 reflectionsΔρmin = 0.49 e Å3
251 parametersExtinction correction: (SHELXL2014; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00371 (9)
Primary atom site location: heavy-atom method
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.17247 (17)0.06045 (10)0.8272 (2)0.0280 (4)
C2A0.26459 (19)0.04078 (13)0.9118 (3)0.0293 (5)
H2A0.32440.06390.91010.035*
C3A0.27371 (19)0.01251 (13)1.0013 (3)0.0282 (5)
H3A0.33990.02611.06030.034*
C4A0.18709 (19)0.04710 (12)1.0073 (3)0.0254 (5)
C5A0.09273 (19)0.02508 (13)0.9167 (3)0.0323 (6)
H5A0.03160.04740.91560.039*
C6A0.0873 (2)0.02837 (14)0.8291 (3)0.0343 (6)
H6A0.02210.04310.76860.041*
C7A0.1643 (3)0.11948 (14)0.7343 (3)0.0425 (7)
H7AA0.23030.12690.72080.064*
H7AB0.14580.15990.77650.064*
H7AC0.11120.11070.64430.064*
C8A0.1962 (2)0.10450 (14)1.1067 (3)0.0385 (6)
H8AA0.13730.13501.06990.058*
H8AB0.19740.08651.19670.058*
H8AC0.25970.12961.11870.058*
N1B0.34851 (16)0.14589 (11)0.3646 (2)0.0282 (4)
C2B0.37389 (18)0.17934 (12)0.2661 (3)0.0282 (5)
H2B0.34720.22350.23880.034*
C3B0.43849 (18)0.15008 (12)0.2045 (3)0.0265 (5)
H3B0.45610.17430.13530.032*
C4B0.47783 (18)0.08550 (11)0.2429 (2)0.0228 (5)
C5B0.4466 (2)0.05136 (13)0.3414 (3)0.0320 (6)
H5B0.46930.00620.36690.038*
C6B0.3831 (2)0.08253 (14)0.4018 (3)0.0351 (6)
H6B0.36360.05920.47040.042*
C7B0.2809 (2)0.17861 (17)0.4316 (3)0.0432 (7)
H7BA0.22360.14830.42620.065*
H7BB0.25420.22120.38370.065*
H7BC0.32020.18800.52930.065*
C8B0.5518 (2)0.05338 (13)0.1828 (3)0.0299 (5)
H8BA0.53240.00590.15950.045*
H8BB0.62130.05540.25100.045*
H8BC0.55010.07790.09850.045*
N1C0.89692 (15)0.18673 (9)0.2697 (2)0.0235 (4)
C2C0.91494 (19)0.24514 (12)0.2131 (3)0.0261 (5)
H2C0.98360.25840.22640.031*
C3C0.83548 (19)0.28570 (12)0.1369 (3)0.0260 (5)
H3C0.84960.32660.09770.031*
C4C0.73442 (19)0.26743 (12)0.1164 (3)0.0258 (5)
C5C0.7189 (2)0.20670 (15)0.1763 (3)0.0397 (7)
H5C0.65090.19230.16420.048*
C6C0.8000 (2)0.16742 (14)0.2523 (3)0.0348 (6)
H6C0.78780.12640.29290.042*
C7C0.9849 (2)0.14490 (13)0.3522 (3)0.0309 (5)
H7CA0.95970.10420.38540.046*
H7CB1.02800.17120.43200.046*
H7CC1.02550.13160.29400.046*
C8C0.6457 (2)0.31053 (14)0.0333 (3)0.0365 (6)
H8CA0.60450.32310.09110.055*
H8CB0.60300.28500.04790.055*
H8CC0.67150.35170.00240.055*
I10.10438 (2)0.18819 (2)0.05002 (2)0.02898 (5)
I20.48598 (2)0.14790 (2)0.80737 (2)0.03174 (5)
I30.82578 (2)0.01901 (2)0.52125 (2)0.02898 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0402 (12)0.0249 (10)0.0194 (10)0.0074 (9)0.0107 (10)0.0014 (8)
C2A0.0261 (12)0.0309 (12)0.0334 (14)0.0016 (10)0.0133 (11)0.0008 (10)
C3A0.0203 (11)0.0326 (13)0.0291 (13)0.0001 (9)0.0049 (11)0.0024 (10)
C4A0.0277 (12)0.0249 (11)0.0243 (12)0.0017 (9)0.0097 (11)0.0063 (9)
C5A0.0222 (12)0.0360 (14)0.0376 (15)0.0056 (10)0.0088 (12)0.0090 (11)
C6A0.0251 (12)0.0395 (14)0.0298 (14)0.0071 (10)0.0021 (12)0.0059 (11)
C7A0.070 (2)0.0321 (14)0.0283 (14)0.0153 (14)0.0203 (15)0.0070 (11)
C8A0.0462 (17)0.0357 (14)0.0347 (14)0.0042 (12)0.0151 (14)0.0045 (11)
N1B0.0221 (10)0.0379 (12)0.0217 (10)0.0014 (8)0.0036 (9)0.0037 (8)
C2B0.0226 (11)0.0247 (12)0.0354 (14)0.0015 (9)0.0072 (11)0.0010 (10)
C3B0.0233 (11)0.0236 (11)0.0321 (13)0.0038 (9)0.0088 (11)0.0060 (9)
C4B0.0222 (11)0.0227 (11)0.0197 (11)0.0042 (8)0.0020 (10)0.0017 (8)
C5B0.0381 (14)0.0269 (12)0.0308 (13)0.0049 (10)0.0113 (12)0.0085 (10)
C6B0.0377 (15)0.0409 (15)0.0284 (13)0.0040 (11)0.0132 (13)0.0112 (11)
C7B0.0339 (15)0.068 (2)0.0291 (14)0.0137 (14)0.0118 (13)0.0059 (13)
C8B0.0298 (12)0.0278 (12)0.0321 (13)0.0022 (10)0.0102 (11)0.0001 (10)
N1C0.0248 (10)0.0216 (9)0.0220 (10)0.0003 (7)0.0050 (9)0.0002 (7)
C2C0.0267 (12)0.0240 (11)0.0299 (12)0.0033 (9)0.0124 (11)0.0010 (9)
C3C0.0295 (12)0.0220 (11)0.0276 (12)0.0015 (9)0.0110 (11)0.0023 (9)
C4C0.0264 (12)0.0247 (11)0.0237 (12)0.0003 (9)0.0051 (10)0.0026 (9)
C5C0.0230 (12)0.0405 (15)0.0497 (18)0.0088 (11)0.0044 (13)0.0111 (13)
C6C0.0273 (13)0.0316 (13)0.0406 (15)0.0098 (10)0.0049 (12)0.0105 (11)
C7C0.0270 (12)0.0280 (12)0.0332 (14)0.0030 (10)0.0042 (11)0.0055 (10)
C8C0.0286 (13)0.0349 (14)0.0394 (15)0.0040 (11)0.0026 (13)0.0035 (11)
I10.03136 (9)0.03198 (9)0.02415 (9)0.00129 (6)0.01007 (7)0.00118 (6)
I20.03101 (9)0.02680 (9)0.03405 (10)0.00249 (6)0.00652 (8)0.00621 (6)
I30.03280 (9)0.02248 (8)0.02966 (9)0.00116 (6)0.00787 (7)0.00018 (6)
Geometric parameters (Å, º) top
N1A—C2A1.334 (3)C5B—H5B0.9500
N1A—C6A1.343 (4)C5B—C6B1.376 (4)
N1A—C7A1.481 (3)C6B—H6B0.9500
C2A—H2A0.9500C7B—H7BA0.9800
C2A—C3A1.370 (4)C7B—H7BB0.9800
C3A—H3A0.9500C7B—H7BC0.9800
C3A—C4A1.397 (3)C8B—H8BA0.9800
C4A—C5A1.391 (4)C8B—H8BB0.9800
C4A—C8A1.498 (4)C8B—H8BC0.9800
C5A—H5A0.9500N1C—C2C1.349 (3)
C5A—C6A1.368 (4)N1C—C6C1.347 (3)
C6A—H6A0.9500N1C—C7C1.477 (3)
C7A—H7AA0.9800C2C—H2C0.9500
C7A—H7AB0.9800C2C—C3C1.371 (3)
C7A—H7AC0.9800C3C—H3C0.9500
C8A—H8AA0.9800C3C—C4C1.389 (3)
C8A—H8AB0.9800C4C—C5C1.394 (4)
C8A—H8AC0.9800C4C—C8C1.500 (3)
N1B—C2B1.344 (3)C5C—H5C0.9500
N1B—C6B1.346 (3)C5C—C6C1.369 (4)
N1B—C7B1.480 (3)C6C—H6C0.9500
C2B—H2B0.9500C7C—H7CA0.9800
C2B—C3B1.381 (4)C7C—H7CB0.9800
C3B—H3B0.9500C7C—H7CC0.9800
C3B—C4B1.389 (3)C8C—H8CA0.9800
C4B—C5B1.394 (3)C8C—H8CB0.9800
C4B—C8B1.499 (3)C8C—H8CC0.9800
C2A—N1A—C6A120.3 (2)N1B—C6B—C5B120.5 (2)
C2A—N1A—C7A119.6 (2)N1B—C6B—H6B119.7
C6A—N1A—C7A120.0 (2)C5B—C6B—H6B119.7
N1A—C2A—H2A119.7N1B—C7B—H7BA109.5
N1A—C2A—C3A120.6 (2)N1B—C7B—H7BB109.5
C3A—C2A—H2A119.7N1B—C7B—H7BC109.5
C2A—C3A—H3A119.5H7BA—C7B—H7BB109.5
C2A—C3A—C4A121.0 (2)H7BA—C7B—H7BC109.5
C4A—C3A—H3A119.5H7BB—C7B—H7BC109.5
C3A—C4A—C8A121.4 (2)C4B—C8B—H8BA109.5
C5A—C4A—C3A116.4 (2)C4B—C8B—H8BB109.5
C5A—C4A—C8A122.2 (2)C4B—C8B—H8BC109.5
C4A—C5A—H5A119.7H8BA—C8B—H8BB109.5
C6A—C5A—C4A120.6 (2)H8BA—C8B—H8BC109.5
C6A—C5A—H5A119.7H8BB—C8B—H8BC109.5
N1A—C6A—C5A121.1 (2)C2C—N1C—C7C119.0 (2)
N1A—C6A—H6A119.5C6C—N1C—C2C120.3 (2)
C5A—C6A—H6A119.5C6C—N1C—C7C120.7 (2)
N1A—C7A—H7AA109.5N1C—C2C—H2C119.6
N1A—C7A—H7AB109.5N1C—C2C—C3C120.9 (2)
N1A—C7A—H7AC109.5C3C—C2C—H2C119.6
H7AA—C7A—H7AB109.5C2C—C3C—H3C119.7
H7AA—C7A—H7AC109.5C2C—C3C—C4C120.5 (2)
H7AB—C7A—H7AC109.5C4C—C3C—H3C119.7
C4A—C8A—H8AA109.5C3C—C4C—C5C116.9 (2)
C4A—C8A—H8AB109.5C3C—C4C—C8C121.9 (2)
C4A—C8A—H8AC109.5C5C—C4C—C8C121.2 (2)
H8AA—C8A—H8AB109.5C4C—C5C—H5C119.4
H8AA—C8A—H8AC109.5C6C—C5C—C4C121.2 (2)
H8AB—C8A—H8AC109.5C6C—C5C—H5C119.4
C2B—N1B—C6B120.6 (2)N1C—C6C—C5C120.3 (2)
C2B—N1B—C7B119.8 (2)N1C—C6C—H6C119.9
C6B—N1B—C7B119.6 (2)C5C—C6C—H6C119.9
N1B—C2B—H2B119.7N1C—C7C—H7CA109.5
N1B—C2B—C3B120.5 (2)N1C—C7C—H7CB109.5
C3B—C2B—H2B119.7N1C—C7C—H7CC109.5
C2B—C3B—H3B119.8H7CA—C7C—H7CB109.5
C2B—C3B—C4B120.4 (2)H7CA—C7C—H7CC109.5
C4B—C3B—H3B119.8H7CB—C7C—H7CC109.5
C3B—C4B—C5B117.4 (2)C4C—C8C—H8CA109.5
C3B—C4B—C8B121.9 (2)C4C—C8C—H8CB109.5
C5B—C4B—C8B120.7 (2)C4C—C8C—H8CC109.5
C4B—C5B—H5B119.8H8CA—C8C—H8CB109.5
C6B—C5B—C4B120.5 (2)H8CA—C8C—H8CC109.5
C6B—C5B—H5B119.8H8CB—C8C—H8CC109.5
N1A—C2A—C3A—C4A0.6 (4)C4B—C5B—C6B—N1B1.5 (4)
C2A—N1A—C6A—C5A0.4 (4)C6B—N1B—C2B—C3B2.0 (4)
C2A—C3A—C4A—C5A0.9 (4)C7B—N1B—C2B—C3B178.7 (2)
C2A—C3A—C4A—C8A178.8 (2)C7B—N1B—C6B—C5B179.6 (3)
C3A—C4A—C5A—C6A0.9 (4)C8B—C4B—C5B—C6B176.4 (2)
C4A—C5A—C6A—N1A0.7 (4)N1C—C2C—C3C—C4C0.1 (4)
C6A—N1A—C2A—C3A0.3 (4)C2C—N1C—C6C—C5C0.4 (4)
C7A—N1A—C2A—C3A178.2 (2)C2C—C3C—C4C—C5C0.1 (4)
C7A—N1A—C6A—C5A178.2 (2)C2C—C3C—C4C—C8C179.9 (2)
C8A—C4A—C5A—C6A178.7 (3)C3C—C4C—C5C—C6C0.3 (4)
N1B—C2B—C3B—C4B0.3 (4)C4C—C5C—C6C—N1C0.5 (5)
C2B—N1B—C6B—C5B1.1 (4)C6C—N1C—C2C—C3C0.2 (4)
C2B—C3B—C4B—C5B2.2 (4)C7C—N1C—C2C—C3C179.4 (2)
C2B—C3B—C4B—C8B177.2 (2)C7C—N1C—C6C—C5C179.6 (3)
C3B—C4B—C5B—C6B3.0 (4)C8C—C4C—C5C—C6C179.9 (3)
 

Acknowledgements

The authors would like to thank the Chemistry and Biochemistry Department of Fredonia State Univeristy of New York for funding the study and for the purchase of the diffractometer.

References

First citationAult, A. (1997). Techniques and Experiments for Organic Chemistry, 5th ed., pp. 509–511. Prospect Heights, USA: Waveland Press.  Google Scholar
First citationBruker (2015). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHerbstein, F. H., Reisner, G. M. & Schwotzer, W. (1985). J. Inclusion Phenom. 3, 173–182.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, X.-J., Sun, S.-X., Liu, S.-L., Ma, J.-P. & Xing, D.-X. (2005). Acta Cryst. E61, o756–o757.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds