organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-{[5-(4-Chloro­phen­yl)-3-methyl-1H-pyrazol-1-yl]meth­yl}-1,3,4-oxa­diazole-2(3H)-thione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ePharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, 71515 Assiut, Egypt, fChemistry Department, College of Education, Salahaddin University-Hawler, Erbil, Kurdistan Region, Iraq, and gFaculty of Pharmacy, Medicinal Chemistry Department, Assiut University, Assiut 71526, Egypt
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 January 2017; accepted 1 February 2017; online 3 February 2017)

In the title compound, C13H11ClN4OS, the oxa­diazo­lethione ring is inclined to the pyrazole ring by 79.2 (2)°. The 4-chloro­phenyl ring is rotationally disordered, with the two fragments inclined to one another by 27.1 (4)°, and to the pyrazole ring by 43.1 (3) and 68.6 (3)°. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers, enclosing an R22(14) ring motif. The dimers are linked by C—H⋯N hydrogen bonds, forming ribbons propagating along the a-axis direction and enclosing R22(8) ring motifs. The ribbons are linked by C—H⋯Cl hydrogen bonds, forming a three-dimensional supra­molecular structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The pyrazole nucleus is common in a number of biologically active mol­ecules, exhibiting anti­bacterial (Nada et al., 2009[Nada, M. A., Hamdi, M. H., Ahmed, S. M. & Omar, A. M. (2009). J. Bio. Chem. 20, 975-987.]), anti­tubercular (Pattan et al., 2009[Pattan, S. R., Rabara, P. A., Pattan, J. S., Bukitagar, A. A., Wakale, V. S. & Musmade, D. S. (2009). Indian J. Chem. Sect. B, 48, 1453-1456.]), anti­depressant (Mathew et al., 2012[Mathew, B., Suresh, J. & Anbazhagan, S. (2012). J. Am. Chem. Soc. 2, 1-8.]), anti-inflammatory (El-Moghazy et al., 2012[El-Moghazy, S. M., Barsoum, F. F., Abdel-Rahman, H. M. & Marzouk, A. A. (2012). Med. Chem. Res. 21, 1722-1733.]), analgesic (Panneer et al., 2011[Panneer, S. T., Saravanan, G., Prakash, C. P. & Kumar, P. D. (2011). Afr. J. Chem. 1(2), 126-129.]), anti­cancer (Mohareb et al., 2012[Mohareb, R. M., El-Sayed, N. N. & Abdelaziz, M. A. (2012). Molecules, 17, 8449-8463.]) and anti­oxidant (Tarun et al., 2012[Tarun, S., Mithilesh, R. S., Pooja, C. & Saraf, S. K. (2012). Int. J. Res. Pharm. Sci. 2, 81-96.]) activities. Our research is directed towards the synthesis of novel pyrazole derivatives with good anti-inflammatory activity in good yield. Herein, we report on the synthesis and crystal structure of the title pyrazole derivative.

In the title compound, Fig. 1[link], the dihedral angle between the mean planes of the two five-membered rings is 79.2 (2)°, while that between the pyrazole ring and the C8A–C13A orientation of the disordered 4-chloro­phenyl ring is 43.1 (3)°. The disorder in the benzene ring involves primarily a rotation about the C4—C8 (A or B) bond by 27.1 (4)°, with a nearly equal population in both orientations.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and 50% probability displacement ellipsoids. The alternate location of the 4-chloro­phenyl ring is shown by pale solid ellipsoids and dotted line bonds.

In the crystal, pairwise N1—H1⋯N4i and C3—H3B⋯N2ii hydrogen bonds (see Table 1[link]) form ribbons running along the a-axis direction (Fig. 2[link]). The ribbons are connected by pairwise C7—H7C⋯Cl1Biii hydrogen bonds (see Table 1[link]) to form a three-dimensional supra­molecular structure (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.88 2.02 2.836 (5) 153
C3—H3B⋯N2ii 0.99 2.51 3.445 (6) 158
C7—H7C⋯Cl1Biii 0.98 2.73 3.635 (10) 153
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+2, -z+1; (iii) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the ribbons formed by N—H⋯N and C—H⋯N hydrogen bonds (dashed lines; see Table 1[link]). For clarity, only the H atoms involved in hydrogen bonding have been included.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, only the H atoms involved in hydrogen bonding have been included.

Synthesis and crystallization

A mixture of 2-(5-(4-chloro­phen­yl)-3-methyl-1H-pyrazol-1-yl)acetic acid hydrazide (1.33 g, 5 mmol) and potassium hydroxide (0.2 g, 5 mmol) in carbon di­sulfide (5 ml) was refluxed in ethanol (25 ml) for 12 h on a steam bath. The reaction mixture was concentrated, cooled and neutralized with hydro­chloric acid solution. The separated solid was collected, washed with water, dried and crystallized from ethanol solution to give colourless needle-like crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The benzene ring (C8–C13) is rotationally disordered by 27.1 (4)° in approximately equal amounts; refined occupancy ratio (A:B) = 0.506 (5): 0.494 (5). The two components of the disordered ring were refined as rigid hexa­gons.

Table 2
Experimental details

Crystal data
Chemical formula C13H11ClN4OS
Mr 306.77
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 4.9309 (2), 17.1173 (8), 16.6517 (7)
β (°) 91.189 (3)
V3) 1405.16 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.81
Crystal size (mm) 0.20 × 0.05 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.63, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 10669, 2632, 1759
Rint 0.080
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.195, 1.05
No. of reflections 2632
No. of parameters 180
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.49
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

5-{[5-(4-Chlorophenyl)-3-methyl-1H-pyrazol-1-yl]methyl}-1,3,4-oxadiazole-2(3H)-thione top
Crystal data top
C13H11ClN4OSF(000) = 632
Mr = 306.77Dx = 1.450 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 4.9309 (2) ÅCell parameters from 4259 reflections
b = 17.1173 (8) Åθ = 3.7–69.9°
c = 16.6517 (7) ŵ = 3.81 mm1
β = 91.189 (3)°T = 150 K
V = 1405.16 (11) Å3Needles, colourless
Z = 40.20 × 0.05 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2632 independent reflections
Radiation source: INCOATEC IµS micro-focus source1759 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.080
Detector resolution: 10.4167 pixels mm-1θmax = 70.1°, θmin = 3.7°
ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2018
Tmin = 0.63, Tmax = 0.92l = 2020
10669 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.106P)2 + 0.4524P]
where P = (Fo2 + 2Fc2)/3
2632 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.51 e Å3
2 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The 4-chlorophenyl group is rotationally disordered by 27.1 (4)° in approximately equal amounts. The two components of the disorder were refined as rigid hexagons. H-atoms were placed in calculated positions (C—H = 0.95 - 0.9 Å; N—H = 0.88 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.3239 (3)0.90840 (8)0.71546 (7)0.0599 (4)
O10.9335 (6)0.86722 (16)0.60987 (18)0.0498 (7)
N10.9888 (7)0.9914 (2)0.6167 (2)0.0491 (8)
H11.04951.03790.63070.059*
N20.7856 (7)0.9795 (2)0.5597 (2)0.0482 (8)
N30.7160 (7)0.8117 (2)0.4491 (2)0.0489 (9)
N40.8597 (7)0.8490 (2)0.3914 (2)0.0511 (9)
C11.0829 (8)0.9253 (2)0.6482 (2)0.0473 (10)
C20.7581 (8)0.9051 (2)0.5581 (3)0.0476 (10)
C30.5703 (9)0.8592 (3)0.5072 (3)0.0556 (11)
H3A0.46080.82460.54150.067*
H3B0.44470.89500.47820.067*
C40.7085 (9)0.7334 (3)0.4378 (3)0.0526 (11)
C50.8504 (10)0.7191 (3)0.3686 (3)0.0564 (12)
H50.87980.67000.34380.068*
C60.9417 (9)0.7919 (3)0.3426 (3)0.0527 (11)
C71.1209 (10)0.8099 (3)0.2742 (3)0.0613 (12)
H7A1.07210.77640.22840.092*
H7B1.31030.80040.29030.092*
H7C1.09830.86490.25880.092*
Cl1A0.1985 (12)0.4995 (3)0.6544 (5)0.0542 (10)0.506 (5)
C8A0.5677 (16)0.6786 (3)0.4912 (5)0.0459 (10)0.506 (5)
C9A0.5994 (16)0.6831 (4)0.5742 (5)0.049 (2)0.506 (5)
H9A0.69670.72550.59790.059*0.506 (5)
C10A0.4886 (18)0.6258 (5)0.6227 (3)0.0514 (17)0.506 (5)
H10A0.51020.62890.67940.062*0.506 (5)
C11A0.3461 (18)0.5638 (4)0.5881 (4)0.0418 (16)0.506 (5)
C12A0.3145 (15)0.5593 (4)0.5051 (5)0.0475 (15)0.506 (5)
H12A0.21710.51690.48150.057*0.506 (5)
C13A0.4252 (16)0.6167 (4)0.4567 (3)0.0433 (18)0.506 (5)
H13A0.40360.61360.39990.052*0.506 (5)
Cl1B0.1220 (12)0.5135 (4)0.6530 (5)0.0542 (10)0.494 (5)
C8B0.5833 (15)0.6771 (4)0.4934 (5)0.0459 (10)0.494 (5)
C9B0.6805 (13)0.6650 (5)0.5714 (6)0.049 (2)0.494 (5)
H9B0.84120.69060.58970.059*0.494 (5)
C10B0.5427 (17)0.6154 (5)0.6226 (4)0.0514 (17)0.494 (5)
H10B0.60910.60720.67590.062*0.494 (5)
C11B0.3076 (16)0.5780 (4)0.5958 (4)0.0418 (16)0.494 (5)
C12B0.2104 (13)0.5901 (4)0.5178 (5)0.0475 (15)0.494 (5)
H12B0.04980.56440.49950.057*0.494 (5)
C13B0.3483 (16)0.6396 (5)0.4666 (4)0.0433 (18)0.494 (5)
H13B0.28190.64790.41340.052*0.494 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0586 (7)0.0667 (8)0.0547 (6)0.0081 (5)0.0091 (5)0.0061 (5)
O10.0478 (16)0.0355 (15)0.0665 (19)0.0006 (12)0.0149 (14)0.0005 (13)
N10.055 (2)0.041 (2)0.0515 (19)0.0032 (16)0.0035 (17)0.0019 (15)
N20.051 (2)0.042 (2)0.052 (2)0.0013 (15)0.0075 (16)0.0023 (14)
N30.049 (2)0.0377 (19)0.061 (2)0.0072 (15)0.0139 (17)0.0069 (15)
N40.051 (2)0.0371 (19)0.066 (2)0.0013 (15)0.0133 (17)0.0025 (15)
C10.048 (2)0.042 (2)0.053 (2)0.0021 (17)0.0185 (19)0.0016 (17)
C20.043 (2)0.042 (2)0.058 (2)0.0014 (17)0.0153 (19)0.0005 (18)
C30.052 (3)0.041 (2)0.074 (3)0.0029 (19)0.014 (2)0.012 (2)
C40.050 (2)0.042 (2)0.066 (3)0.0030 (18)0.013 (2)0.0052 (19)
C50.060 (3)0.038 (2)0.072 (3)0.0026 (19)0.023 (2)0.004 (2)
C60.051 (3)0.041 (2)0.066 (3)0.0018 (18)0.015 (2)0.0029 (19)
C70.066 (3)0.051 (3)0.068 (3)0.002 (2)0.024 (2)0.009 (2)
Cl1A0.069 (3)0.0373 (19)0.0567 (7)0.0002 (16)0.001 (2)0.0098 (13)
C8A0.038 (2)0.036 (2)0.064 (3)0.0009 (16)0.0118 (19)0.0029 (18)
C9A0.025 (5)0.070 (5)0.053 (3)0.010 (4)0.023 (3)0.023 (3)
C10A0.036 (4)0.069 (4)0.050 (3)0.004 (3)0.009 (2)0.008 (2)
C11A0.046 (3)0.028 (3)0.052 (3)0.007 (3)0.009 (2)0.006 (2)
C12A0.045 (4)0.040 (4)0.058 (4)0.003 (3)0.002 (3)0.002 (3)
C13A0.031 (5)0.040 (5)0.058 (3)0.009 (3)0.005 (3)0.008 (3)
Cl1B0.069 (3)0.0373 (19)0.0567 (7)0.0002 (16)0.001 (2)0.0098 (13)
C8B0.038 (2)0.036 (2)0.064 (3)0.0009 (16)0.0118 (19)0.0029 (18)
C9B0.025 (5)0.070 (5)0.053 (3)0.010 (4)0.023 (3)0.023 (3)
C10B0.036 (4)0.069 (4)0.050 (3)0.004 (3)0.009 (2)0.008 (2)
C11B0.046 (3)0.028 (3)0.052 (3)0.007 (3)0.009 (2)0.006 (2)
C12B0.045 (4)0.040 (4)0.058 (4)0.003 (3)0.002 (3)0.002 (3)
C13B0.031 (5)0.040 (5)0.058 (3)0.009 (3)0.005 (3)0.008 (3)
Geometric parameters (Å, º) top
S1—C11.642 (5)Cl1A—C11A1.730 (3)
O1—C21.371 (5)C8A—C9A1.3900
O1—C11.386 (5)C8A—C13A1.3900
N1—C11.327 (5)C9A—C10A1.3900
N1—N21.380 (5)C9A—H9A0.9500
N1—H10.8800C10A—C11A1.3900
N2—C21.282 (5)C10A—H10A0.9500
N3—C41.355 (6)C11A—C12A1.3900
N3—N41.364 (5)C12A—C13A1.3900
N3—C31.463 (5)C12A—H12A0.9500
N4—C61.339 (6)C13A—H13A0.9500
C2—C31.470 (6)Cl1B—C11B1.732 (3)
C3—H3A0.9900C8B—C9B1.3900
C3—H3B0.9900C8B—C13B1.3900
C4—C51.383 (6)C9B—C10B1.3900
C4—C8A1.476 (5)C9B—H9B0.9500
C4—C8B1.480 (5)C10B—C11B1.3900
C5—C61.396 (6)C10B—H10B0.9500
C5—H50.9500C11B—C12B1.3900
C6—C71.488 (6)C12B—C13B1.3900
C7—H7A0.9800C12B—H12B0.9500
C7—H7B0.9800C13B—H13B0.9500
C7—H7C0.9800
C2—O1—C1105.8 (3)H7B—C7—H7C109.5
C1—N1—N2112.8 (4)C9A—C8A—C13A120.0
C1—N1—H1123.6C9A—C8A—C4121.3 (7)
N2—N1—H1123.6C13A—C8A—C4118.4 (7)
C2—N2—N1103.7 (3)C10A—C9A—C8A120.0
C4—N3—N4112.2 (3)C10A—C9A—H9A120.0
C4—N3—C3129.0 (4)C8A—C9A—H9A120.0
N4—N3—C3118.4 (3)C11A—C10A—C9A120.0
C6—N4—N3104.8 (3)C11A—C10A—H10A120.0
N1—C1—O1104.6 (4)C9A—C10A—H10A120.0
N1—C1—S1131.5 (4)C10A—C11A—C12A120.0
O1—C1—S1123.9 (3)C10A—C11A—Cl1A115.9 (6)
N2—C2—O1113.0 (4)C12A—C11A—Cl1A123.9 (6)
N2—C2—C3127.5 (4)C13A—C12A—C11A120.0
O1—C2—C3119.5 (4)C13A—C12A—H12A120.0
N3—C3—C2111.5 (4)C11A—C12A—H12A120.0
N3—C3—H3A109.3C12A—C13A—C8A120.0
C2—C3—H3A109.3C12A—C13A—H13A120.0
N3—C3—H3B109.3C8A—C13A—H13A120.0
C2—C3—H3B109.3C9B—C8B—C13B120.0
H3A—C3—H3B108.0C9B—C8B—C4122.8 (7)
N3—C4—C5106.1 (4)C13B—C8B—C4117.1 (7)
N3—C4—C8A123.8 (5)C8B—C9B—C10B120.0
C5—C4—C8A130.0 (5)C8B—C9B—H9B120.0
N3—C4—C8B124.6 (5)C10B—C9B—H9B120.0
C5—C4—C8B129.2 (5)C11B—C10B—C9B120.0
C4—C5—C6105.9 (4)C11B—C10B—H10B120.0
C4—C5—H5127.1C9B—C10B—H10B120.0
C6—C5—H5127.1C10B—C11B—C12B120.0
N4—C6—C5111.1 (4)C10B—C11B—Cl1B124.4 (6)
N4—C6—C7120.3 (4)C12B—C11B—Cl1B115.6 (6)
C5—C6—C7128.5 (4)C13B—C12B—C11B120.0
C6—C7—H7A109.5C13B—C12B—H12B120.0
C6—C7—H7B109.5C11B—C12B—H12B120.0
H7A—C7—H7B109.5C12B—C13B—C8B120.0
C6—C7—H7C109.5C12B—C13B—H13B120.0
H7A—C7—H7C109.5C8B—C13B—H13B120.0
C1—N1—N2—C20.5 (5)N3—C4—C8A—C9A46.9 (7)
C4—N3—N4—C60.5 (5)C5—C4—C8A—C9A134.3 (6)
C3—N3—N4—C6172.9 (4)N3—C4—C8A—C13A140.1 (5)
N2—N1—C1—O10.0 (4)C5—C4—C8A—C13A38.8 (9)
N2—N1—C1—S1178.6 (3)C13A—C8A—C9A—C10A0.0
C2—O1—C1—N10.5 (4)C4—C8A—C9A—C10A173.0 (7)
C2—O1—C1—S1179.2 (3)C8A—C9A—C10A—C11A0.0
N1—N2—C2—O10.8 (4)C9A—C10A—C11A—C12A0.0
N1—N2—C2—C3179.3 (4)C9A—C10A—C11A—Cl1A175.9 (7)
C1—O1—C2—N20.8 (4)C10A—C11A—C12A—C13A0.0
C1—O1—C2—C3179.5 (3)Cl1A—C11A—C12A—C13A175.6 (7)
C4—N3—C3—C2123.0 (5)C11A—C12A—C13A—C8A0.0
N4—N3—C3—C264.9 (5)C9A—C8A—C13A—C12A0.0
N2—C2—C3—N3113.1 (5)C4—C8A—C13A—C12A173.2 (7)
O1—C2—C3—N365.3 (5)N3—C4—C8B—C9B64.5 (7)
N4—N3—C4—C51.0 (5)C5—C4—C8B—C9B111.6 (7)
C3—N3—C4—C5171.5 (4)N3—C4—C8B—C13B111.0 (6)
N4—N3—C4—C8A179.9 (6)C5—C4—C8B—C13B72.9 (7)
C3—N3—C4—C8A7.6 (9)C13B—C8B—C9B—C10B0.0
N4—N3—C4—C8B175.8 (6)C4—C8B—C9B—C10B175.4 (7)
C3—N3—C4—C8B11.7 (9)C8B—C9B—C10B—C11B0.0
N3—C4—C5—C61.1 (6)C9B—C10B—C11B—C12B0.0
C8A—C4—C5—C6179.9 (7)C9B—C10B—C11B—Cl1B178.6 (7)
C8B—C4—C5—C6175.5 (6)C10B—C11B—C12B—C13B0.0
N3—N4—C6—C50.3 (5)Cl1B—C11B—C12B—C13B178.7 (7)
N3—N4—C6—C7176.2 (4)C11B—C12B—C13B—C8B0.0
C4—C5—C6—N40.9 (6)C9B—C8B—C13B—C12B0.0
C4—C5—C6—C7175.3 (5)C4—C8B—C13B—C12B175.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.882.022.836 (5)153
C3—H3B···N2ii0.992.513.445 (6)158
C7—H7C···Cl1Biii0.982.733.635 (10)153
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+3/2, z1/2.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Moghazy, S. M., Barsoum, F. F., Abdel-Rahman, H. M. & Marzouk, A. A. (2012). Med. Chem. Res. 21, 1722–1733.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMathew, B., Suresh, J. & Anbazhagan, S. (2012). J. Am. Chem. Soc. 2, 1–8.  Google Scholar
First citationMohareb, R. M., El-Sayed, N. N. & Abdelaziz, M. A. (2012). Molecules, 17, 8449–8463.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNada, M. A., Hamdi, M. H., Ahmed, S. M. & Omar, A. M. (2009). J. Bio. Chem. 20, 975–987.  Google Scholar
First citationPanneer, S. T., Saravanan, G., Prakash, C. P. & Kumar, P. D. (2011). Afr. J. Chem. 1(2), 126–129.  Google Scholar
First citationPattan, S. R., Rabara, P. A., Pattan, J. S., Bukitagar, A. A., Wakale, V. S. & Musmade, D. S. (2009). Indian J. Chem. Sect. B, 48, 1453–1456.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTarun, S., Mithilesh, R. S., Pooja, C. & Saraf, S. K. (2012). Int. J. Res. Pharm. Sci. 2, 81–96.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds