organic compounds
5-{[5-(4-Chlorophenyl)-3-methyl-1H-pyrazol-1-yl]methyl}-1,3,4-oxadiazole-2(3H)-thione
aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ePharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, 71515 Assiut, Egypt, fChemistry Department, College of Education, Salahaddin University-Hawler, Erbil, Kurdistan Region, Iraq, and gFaculty of Pharmacy, Medicinal Chemistry Department, Assiut University, Assiut 71526, Egypt
*Correspondence e-mail: shaabankamel@yahoo.com
In the title compound, C13H11ClN4OS, the oxadiazolethione ring is inclined to the pyrazole ring by 79.2 (2)°. The 4-chlorophenyl ring is rotationally disordered, with the two fragments inclined to one another by 27.1 (4)°, and to the pyrazole ring by 43.1 (3) and 68.6 (3)°. In the crystal, molecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers, enclosing an R22(14) ring motif. The dimers are linked by C—H⋯N hydrogen bonds, forming ribbons propagating along the a-axis direction and enclosing R22(8) ring motifs. The ribbons are linked by C—H⋯Cl hydrogen bonds, forming a three-dimensional supramolecular structure.
Keywords: crystal structure; pyrazole; oxadiazolethione; hydrogen bonding.
CCDC reference: 1530588
Structure description
The pyrazole nucleus is common in a number of biologically active molecules, exhibiting antibacterial (Nada et al., 2009), antitubercular (Pattan et al., 2009), antidepressant (Mathew et al., 2012), anti-inflammatory (El-Moghazy et al., 2012), analgesic (Panneer et al., 2011), anticancer (Mohareb et al., 2012) and antioxidant (Tarun et al., 2012) activities. Our research is directed towards the synthesis of novel pyrazole derivatives with good anti-inflammatory activity in good yield. Herein, we report on the synthesis and of the title pyrazole derivative.
In the title compound, Fig. 1, the dihedral angle between the mean planes of the two five-membered rings is 79.2 (2)°, while that between the pyrazole ring and the C8A–C13A orientation of the disordered 4-chlorophenyl ring is 43.1 (3)°. The disorder in the benzene ring involves primarily a rotation about the C4—C8 (A or B) bond by 27.1 (4)°, with a nearly equal population in both orientations.
In the crystal, pairwise N1—H1⋯N4i and C3—H3B⋯N2ii hydrogen bonds (see Table 1) form ribbons running along the a-axis direction (Fig. 2). The ribbons are connected by pairwise C7—H7C⋯Cl1Biii hydrogen bonds (see Table 1) to form a three-dimensional supramolecular structure (Fig. 3).
Synthesis and crystallization
A mixture of 2-(5-(4-chlorophenyl)-3-methyl-1H-pyrazol-1-yl)acetic acid hydrazide (1.33 g, 5 mmol) and potassium hydroxide (0.2 g, 5 mmol) in carbon disulfide (5 ml) was refluxed in ethanol (25 ml) for 12 h on a steam bath. The reaction mixture was concentrated, cooled and neutralized with hydrochloric acid solution. The separated solid was collected, washed with water, dried and crystallized from ethanol solution to give colourless needle-like crystals.
Refinement
Crystal data, data collection and structure . The benzene ring (C8–C13) is rotationally disordered by 27.1 (4)° in approximately equal amounts; refined occupancy ratio (A:B) = 0.506 (5): 0.494 (5). The two components of the disordered ring were refined as rigid hexagons.
details are summarized in Table 2Structural data
CCDC reference: 1530588
https://doi.org/10.1107/S2414314617001766/su4127sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617001766/su4127Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617001766/su4127Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C13H11ClN4OS | F(000) = 632 |
Mr = 306.77 | Dx = 1.450 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 4.9309 (2) Å | Cell parameters from 4259 reflections |
b = 17.1173 (8) Å | θ = 3.7–69.9° |
c = 16.6517 (7) Å | µ = 3.81 mm−1 |
β = 91.189 (3)° | T = 150 K |
V = 1405.16 (11) Å3 | Needles, colourless |
Z = 4 | 0.20 × 0.05 × 0.02 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2632 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 1759 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.080 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 70.1°, θmin = 3.7° |
ω scans | h = −5→5 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −20→18 |
Tmin = 0.63, Tmax = 0.92 | l = −20→20 |
10669 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.068 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.195 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.106P)2 + 0.4524P] where P = (Fo2 + 2Fc2)/3 |
2632 reflections | (Δ/σ)max = 0.001 |
180 parameters | Δρmax = 0.51 e Å−3 |
2 restraints | Δρmin = −0.49 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The 4-chlorophenyl group is rotationally disordered by 27.1 (4)° in approximately equal amounts. The two components of the disorder were refined as rigid hexagons. H-atoms were placed in calculated positions (C—H = 0.95 - 0.9 Å; N—H = 0.88 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 1.3239 (3) | 0.90840 (8) | 0.71546 (7) | 0.0599 (4) | |
O1 | 0.9335 (6) | 0.86722 (16) | 0.60987 (18) | 0.0498 (7) | |
N1 | 0.9888 (7) | 0.9914 (2) | 0.6167 (2) | 0.0491 (8) | |
H1 | 1.0495 | 1.0379 | 0.6307 | 0.059* | |
N2 | 0.7856 (7) | 0.9795 (2) | 0.5597 (2) | 0.0482 (8) | |
N3 | 0.7160 (7) | 0.8117 (2) | 0.4491 (2) | 0.0489 (9) | |
N4 | 0.8597 (7) | 0.8490 (2) | 0.3914 (2) | 0.0511 (9) | |
C1 | 1.0829 (8) | 0.9253 (2) | 0.6482 (2) | 0.0473 (10) | |
C2 | 0.7581 (8) | 0.9051 (2) | 0.5581 (3) | 0.0476 (10) | |
C3 | 0.5703 (9) | 0.8592 (3) | 0.5072 (3) | 0.0556 (11) | |
H3A | 0.4608 | 0.8246 | 0.5415 | 0.067* | |
H3B | 0.4447 | 0.8950 | 0.4782 | 0.067* | |
C4 | 0.7085 (9) | 0.7334 (3) | 0.4378 (3) | 0.0526 (11) | |
C5 | 0.8504 (10) | 0.7191 (3) | 0.3686 (3) | 0.0564 (12) | |
H5 | 0.8798 | 0.6700 | 0.3438 | 0.068* | |
C6 | 0.9417 (9) | 0.7919 (3) | 0.3426 (3) | 0.0527 (11) | |
C7 | 1.1209 (10) | 0.8099 (3) | 0.2742 (3) | 0.0613 (12) | |
H7A | 1.0721 | 0.7764 | 0.2284 | 0.092* | |
H7B | 1.3103 | 0.8004 | 0.2903 | 0.092* | |
H7C | 1.0983 | 0.8649 | 0.2588 | 0.092* | |
Cl1A | 0.1985 (12) | 0.4995 (3) | 0.6544 (5) | 0.0542 (10) | 0.506 (5) |
C8A | 0.5677 (16) | 0.6786 (3) | 0.4912 (5) | 0.0459 (10) | 0.506 (5) |
C9A | 0.5994 (16) | 0.6831 (4) | 0.5742 (5) | 0.049 (2) | 0.506 (5) |
H9A | 0.6967 | 0.7255 | 0.5979 | 0.059* | 0.506 (5) |
C10A | 0.4886 (18) | 0.6258 (5) | 0.6227 (3) | 0.0514 (17) | 0.506 (5) |
H10A | 0.5102 | 0.6289 | 0.6794 | 0.062* | 0.506 (5) |
C11A | 0.3461 (18) | 0.5638 (4) | 0.5881 (4) | 0.0418 (16) | 0.506 (5) |
C12A | 0.3145 (15) | 0.5593 (4) | 0.5051 (5) | 0.0475 (15) | 0.506 (5) |
H12A | 0.2171 | 0.5169 | 0.4815 | 0.057* | 0.506 (5) |
C13A | 0.4252 (16) | 0.6167 (4) | 0.4567 (3) | 0.0433 (18) | 0.506 (5) |
H13A | 0.4036 | 0.6136 | 0.3999 | 0.052* | 0.506 (5) |
Cl1B | 0.1220 (12) | 0.5135 (4) | 0.6530 (5) | 0.0542 (10) | 0.494 (5) |
C8B | 0.5833 (15) | 0.6771 (4) | 0.4934 (5) | 0.0459 (10) | 0.494 (5) |
C9B | 0.6805 (13) | 0.6650 (5) | 0.5714 (6) | 0.049 (2) | 0.494 (5) |
H9B | 0.8412 | 0.6906 | 0.5897 | 0.059* | 0.494 (5) |
C10B | 0.5427 (17) | 0.6154 (5) | 0.6226 (4) | 0.0514 (17) | 0.494 (5) |
H10B | 0.6091 | 0.6072 | 0.6759 | 0.062* | 0.494 (5) |
C11B | 0.3076 (16) | 0.5780 (4) | 0.5958 (4) | 0.0418 (16) | 0.494 (5) |
C12B | 0.2104 (13) | 0.5901 (4) | 0.5178 (5) | 0.0475 (15) | 0.494 (5) |
H12B | 0.0498 | 0.5644 | 0.4995 | 0.057* | 0.494 (5) |
C13B | 0.3483 (16) | 0.6396 (5) | 0.4666 (4) | 0.0433 (18) | 0.494 (5) |
H13B | 0.2819 | 0.6479 | 0.4134 | 0.052* | 0.494 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0586 (7) | 0.0667 (8) | 0.0547 (6) | 0.0081 (5) | 0.0091 (5) | 0.0061 (5) |
O1 | 0.0478 (16) | 0.0355 (15) | 0.0665 (19) | 0.0006 (12) | 0.0149 (14) | −0.0005 (13) |
N1 | 0.055 (2) | 0.041 (2) | 0.0515 (19) | −0.0032 (16) | 0.0035 (17) | −0.0019 (15) |
N2 | 0.051 (2) | 0.042 (2) | 0.052 (2) | −0.0013 (15) | 0.0075 (16) | −0.0023 (14) |
N3 | 0.049 (2) | 0.0377 (19) | 0.061 (2) | −0.0072 (15) | 0.0139 (17) | −0.0069 (15) |
N4 | 0.051 (2) | 0.0371 (19) | 0.066 (2) | −0.0013 (15) | 0.0133 (17) | 0.0025 (15) |
C1 | 0.048 (2) | 0.042 (2) | 0.053 (2) | 0.0021 (17) | 0.0185 (19) | 0.0016 (17) |
C2 | 0.043 (2) | 0.042 (2) | 0.058 (2) | 0.0014 (17) | 0.0153 (19) | −0.0005 (18) |
C3 | 0.052 (3) | 0.041 (2) | 0.074 (3) | −0.0029 (19) | 0.014 (2) | −0.012 (2) |
C4 | 0.050 (2) | 0.042 (2) | 0.066 (3) | −0.0030 (18) | 0.013 (2) | −0.0052 (19) |
C5 | 0.060 (3) | 0.038 (2) | 0.072 (3) | 0.0026 (19) | 0.023 (2) | −0.004 (2) |
C6 | 0.051 (3) | 0.041 (2) | 0.066 (3) | −0.0018 (18) | 0.015 (2) | 0.0029 (19) |
C7 | 0.066 (3) | 0.051 (3) | 0.068 (3) | 0.002 (2) | 0.024 (2) | 0.009 (2) |
Cl1A | 0.069 (3) | 0.0373 (19) | 0.0567 (7) | 0.0002 (16) | 0.001 (2) | 0.0098 (13) |
C8A | 0.038 (2) | 0.036 (2) | 0.064 (3) | 0.0009 (16) | 0.0118 (19) | −0.0029 (18) |
C9A | 0.025 (5) | 0.070 (5) | 0.053 (3) | −0.010 (4) | 0.023 (3) | −0.023 (3) |
C10A | 0.036 (4) | 0.069 (4) | 0.050 (3) | −0.004 (3) | 0.009 (2) | −0.008 (2) |
C11A | 0.046 (3) | 0.028 (3) | 0.052 (3) | 0.007 (3) | 0.009 (2) | −0.006 (2) |
C12A | 0.045 (4) | 0.040 (4) | 0.058 (4) | −0.003 (3) | 0.002 (3) | 0.002 (3) |
C13A | 0.031 (5) | 0.040 (5) | 0.058 (3) | 0.009 (3) | −0.005 (3) | 0.008 (3) |
Cl1B | 0.069 (3) | 0.0373 (19) | 0.0567 (7) | 0.0002 (16) | 0.001 (2) | 0.0098 (13) |
C8B | 0.038 (2) | 0.036 (2) | 0.064 (3) | 0.0009 (16) | 0.0118 (19) | −0.0029 (18) |
C9B | 0.025 (5) | 0.070 (5) | 0.053 (3) | −0.010 (4) | 0.023 (3) | −0.023 (3) |
C10B | 0.036 (4) | 0.069 (4) | 0.050 (3) | −0.004 (3) | 0.009 (2) | −0.008 (2) |
C11B | 0.046 (3) | 0.028 (3) | 0.052 (3) | 0.007 (3) | 0.009 (2) | −0.006 (2) |
C12B | 0.045 (4) | 0.040 (4) | 0.058 (4) | −0.003 (3) | 0.002 (3) | 0.002 (3) |
C13B | 0.031 (5) | 0.040 (5) | 0.058 (3) | 0.009 (3) | −0.005 (3) | 0.008 (3) |
S1—C1 | 1.642 (5) | Cl1A—C11A | 1.730 (3) |
O1—C2 | 1.371 (5) | C8A—C9A | 1.3900 |
O1—C1 | 1.386 (5) | C8A—C13A | 1.3900 |
N1—C1 | 1.327 (5) | C9A—C10A | 1.3900 |
N1—N2 | 1.380 (5) | C9A—H9A | 0.9500 |
N1—H1 | 0.8800 | C10A—C11A | 1.3900 |
N2—C2 | 1.282 (5) | C10A—H10A | 0.9500 |
N3—C4 | 1.355 (6) | C11A—C12A | 1.3900 |
N3—N4 | 1.364 (5) | C12A—C13A | 1.3900 |
N3—C3 | 1.463 (5) | C12A—H12A | 0.9500 |
N4—C6 | 1.339 (6) | C13A—H13A | 0.9500 |
C2—C3 | 1.470 (6) | Cl1B—C11B | 1.732 (3) |
C3—H3A | 0.9900 | C8B—C9B | 1.3900 |
C3—H3B | 0.9900 | C8B—C13B | 1.3900 |
C4—C5 | 1.383 (6) | C9B—C10B | 1.3900 |
C4—C8A | 1.476 (5) | C9B—H9B | 0.9500 |
C4—C8B | 1.480 (5) | C10B—C11B | 1.3900 |
C5—C6 | 1.396 (6) | C10B—H10B | 0.9500 |
C5—H5 | 0.9500 | C11B—C12B | 1.3900 |
C6—C7 | 1.488 (6) | C12B—C13B | 1.3900 |
C7—H7A | 0.9800 | C12B—H12B | 0.9500 |
C7—H7B | 0.9800 | C13B—H13B | 0.9500 |
C7—H7C | 0.9800 | ||
C2—O1—C1 | 105.8 (3) | H7B—C7—H7C | 109.5 |
C1—N1—N2 | 112.8 (4) | C9A—C8A—C13A | 120.0 |
C1—N1—H1 | 123.6 | C9A—C8A—C4 | 121.3 (7) |
N2—N1—H1 | 123.6 | C13A—C8A—C4 | 118.4 (7) |
C2—N2—N1 | 103.7 (3) | C10A—C9A—C8A | 120.0 |
C4—N3—N4 | 112.2 (3) | C10A—C9A—H9A | 120.0 |
C4—N3—C3 | 129.0 (4) | C8A—C9A—H9A | 120.0 |
N4—N3—C3 | 118.4 (3) | C11A—C10A—C9A | 120.0 |
C6—N4—N3 | 104.8 (3) | C11A—C10A—H10A | 120.0 |
N1—C1—O1 | 104.6 (4) | C9A—C10A—H10A | 120.0 |
N1—C1—S1 | 131.5 (4) | C10A—C11A—C12A | 120.0 |
O1—C1—S1 | 123.9 (3) | C10A—C11A—Cl1A | 115.9 (6) |
N2—C2—O1 | 113.0 (4) | C12A—C11A—Cl1A | 123.9 (6) |
N2—C2—C3 | 127.5 (4) | C13A—C12A—C11A | 120.0 |
O1—C2—C3 | 119.5 (4) | C13A—C12A—H12A | 120.0 |
N3—C3—C2 | 111.5 (4) | C11A—C12A—H12A | 120.0 |
N3—C3—H3A | 109.3 | C12A—C13A—C8A | 120.0 |
C2—C3—H3A | 109.3 | C12A—C13A—H13A | 120.0 |
N3—C3—H3B | 109.3 | C8A—C13A—H13A | 120.0 |
C2—C3—H3B | 109.3 | C9B—C8B—C13B | 120.0 |
H3A—C3—H3B | 108.0 | C9B—C8B—C4 | 122.8 (7) |
N3—C4—C5 | 106.1 (4) | C13B—C8B—C4 | 117.1 (7) |
N3—C4—C8A | 123.8 (5) | C8B—C9B—C10B | 120.0 |
C5—C4—C8A | 130.0 (5) | C8B—C9B—H9B | 120.0 |
N3—C4—C8B | 124.6 (5) | C10B—C9B—H9B | 120.0 |
C5—C4—C8B | 129.2 (5) | C11B—C10B—C9B | 120.0 |
C4—C5—C6 | 105.9 (4) | C11B—C10B—H10B | 120.0 |
C4—C5—H5 | 127.1 | C9B—C10B—H10B | 120.0 |
C6—C5—H5 | 127.1 | C10B—C11B—C12B | 120.0 |
N4—C6—C5 | 111.1 (4) | C10B—C11B—Cl1B | 124.4 (6) |
N4—C6—C7 | 120.3 (4) | C12B—C11B—Cl1B | 115.6 (6) |
C5—C6—C7 | 128.5 (4) | C13B—C12B—C11B | 120.0 |
C6—C7—H7A | 109.5 | C13B—C12B—H12B | 120.0 |
C6—C7—H7B | 109.5 | C11B—C12B—H12B | 120.0 |
H7A—C7—H7B | 109.5 | C12B—C13B—C8B | 120.0 |
C6—C7—H7C | 109.5 | C12B—C13B—H13B | 120.0 |
H7A—C7—H7C | 109.5 | C8B—C13B—H13B | 120.0 |
C1—N1—N2—C2 | 0.5 (5) | N3—C4—C8A—C9A | −46.9 (7) |
C4—N3—N4—C6 | 0.5 (5) | C5—C4—C8A—C9A | 134.3 (6) |
C3—N3—N4—C6 | −172.9 (4) | N3—C4—C8A—C13A | 140.1 (5) |
N2—N1—C1—O1 | 0.0 (4) | C5—C4—C8A—C13A | −38.8 (9) |
N2—N1—C1—S1 | 178.6 (3) | C13A—C8A—C9A—C10A | 0.0 |
C2—O1—C1—N1 | −0.5 (4) | C4—C8A—C9A—C10A | −173.0 (7) |
C2—O1—C1—S1 | −179.2 (3) | C8A—C9A—C10A—C11A | 0.0 |
N1—N2—C2—O1 | −0.8 (4) | C9A—C10A—C11A—C12A | 0.0 |
N1—N2—C2—C3 | −179.3 (4) | C9A—C10A—C11A—Cl1A | −175.9 (7) |
C1—O1—C2—N2 | 0.8 (4) | C10A—C11A—C12A—C13A | 0.0 |
C1—O1—C2—C3 | 179.5 (3) | Cl1A—C11A—C12A—C13A | 175.6 (7) |
C4—N3—C3—C2 | 123.0 (5) | C11A—C12A—C13A—C8A | 0.0 |
N4—N3—C3—C2 | −64.9 (5) | C9A—C8A—C13A—C12A | 0.0 |
N2—C2—C3—N3 | 113.1 (5) | C4—C8A—C13A—C12A | 173.2 (7) |
O1—C2—C3—N3 | −65.3 (5) | N3—C4—C8B—C9B | −64.5 (7) |
N4—N3—C4—C5 | −1.0 (5) | C5—C4—C8B—C9B | 111.6 (7) |
C3—N3—C4—C5 | 171.5 (4) | N3—C4—C8B—C13B | 111.0 (6) |
N4—N3—C4—C8A | 179.9 (6) | C5—C4—C8B—C13B | −72.9 (7) |
C3—N3—C4—C8A | −7.6 (9) | C13B—C8B—C9B—C10B | 0.0 |
N4—N3—C4—C8B | 175.8 (6) | C4—C8B—C9B—C10B | 175.4 (7) |
C3—N3—C4—C8B | −11.7 (9) | C8B—C9B—C10B—C11B | 0.0 |
N3—C4—C5—C6 | 1.1 (6) | C9B—C10B—C11B—C12B | 0.0 |
C8A—C4—C5—C6 | −179.9 (7) | C9B—C10B—C11B—Cl1B | 178.6 (7) |
C8B—C4—C5—C6 | −175.5 (6) | C10B—C11B—C12B—C13B | 0.0 |
N3—N4—C6—C5 | 0.3 (5) | Cl1B—C11B—C12B—C13B | −178.7 (7) |
N3—N4—C6—C7 | −176.2 (4) | C11B—C12B—C13B—C8B | 0.0 |
C4—C5—C6—N4 | −0.9 (6) | C9B—C8B—C13B—C12B | 0.0 |
C4—C5—C6—C7 | 175.3 (5) | C4—C8B—C13B—C12B | −175.7 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N4i | 0.88 | 2.02 | 2.836 (5) | 153 |
C3—H3B···N2ii | 0.99 | 2.51 | 3.445 (6) | 158 |
C7—H7C···Cl1Biii | 0.98 | 2.73 | 3.635 (10) | 153 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x+1, −y+3/2, z−1/2. |
Acknowledgements
The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El-Moghazy, S. M., Barsoum, F. F., Abdel-Rahman, H. M. & Marzouk, A. A. (2012). Med. Chem. Res. 21, 1722–1733. CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mathew, B., Suresh, J. & Anbazhagan, S. (2012). J. Am. Chem. Soc. 2, 1–8. Google Scholar
Mohareb, R. M., El-Sayed, N. N. & Abdelaziz, M. A. (2012). Molecules, 17, 8449–8463. Web of Science CrossRef CAS PubMed Google Scholar
Nada, M. A., Hamdi, M. H., Ahmed, S. M. & Omar, A. M. (2009). J. Bio. Chem. 20, 975–987. Google Scholar
Panneer, S. T., Saravanan, G., Prakash, C. P. & Kumar, P. D. (2011). Afr. J. Chem. 1(2), 126–129. Google Scholar
Pattan, S. R., Rabara, P. A., Pattan, J. S., Bukitagar, A. A., Wakale, V. S. & Musmade, D. S. (2009). Indian J. Chem. Sect. B, 48, 1453–1456. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tarun, S., Mithilesh, R. S., Pooja, C. & Saraf, S. K. (2012). Int. J. Res. Pharm. Sci. 2, 81–96. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.