organic compounds
1,1′-{(1E,1′E)-[Octane-1,8-diylbis(azanylylidene)]bis(methanylylidene)}bis(naphthalen-2-ol) in the zwitterionic form
aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox, Faculty of Technology, University of Ferhat Abbas Sétif-1, 19000-Sétif, Algeria, and bInstitut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg Cedex, France
*Correspondence e-mail: k_ouari@yahoo.fr
The title compound, C30H32O2N2, is formed from two units of ortho-hydroxynaphthaldehyde bridged with 1,8-diaminooctane. In the solid state, it exists as a double zwitterion. The N atoms are protonated and the C—O− bonds lengths are 1.265 (2) Å, with intramolecular N—H⋯O hydrogen bonds forming S(6) ring motifs. The molecule has twofold rotational symmetry, with the twofold axis bisecting the central –CH2—CH2– bond of the bridging octane chain. In the crystal, molecules are linked by N—H⋯O hydrogen bonds, forming chains propagating along the [-201] direction. The chains are linked via C—H⋯O hydrogen bonds, forming a supramolecular three-dimensional framework structure.
Keywords: crystal structure; zwitterion; 1,8-diaminooctane; 2-hydroxy-1-naphthaldehyde; hydrogen bonding; elemental analysis; NMR spectroscopy.
CCDC reference: 1530499
Structure description
Recently, our group has reported the crystal structures of four new o-hydroxynaphthaldehyde (Merzougui et al., 2016; Ouari et al., 2015a,b,c). They crystallize as bis-zwitterionic compounds with strong intramolecular N—H⋯O hydrogen bonds, forming S(6) ring motifs. Such compounds are of interest because the azomethine C=N and C—O groups form stable transition metal complexes by coordinating through the nitrogen and oxygen atoms (Ouari et al., 2010, 2015d).
synthesized using literature methods by reacting primary andThe title compound is formed from two units of ortho-hydroxynaphthaldehyde bridged with 1,8-diaminooctane. The molecule has twofold rotational symmetry with the twofold axis bisecting the central –C15—C15i– bond [symmetry code (i): −x + , −y + , −z + 1]. Atoms N1 and N1i are protonated and the C1—O1 and C1i—O1i bond lengths are 1.265 (2) Å, hence the compound has crystallized as a double zwitterion with intramolecular N—H⋯O hydrogen bonds forming S(6) ring motifs (Table 1 and Fig. 1). This is similar to the structures of the compounds mentioned above.
In the crystal, molecules are linked by N—H⋯O hydrogen bonds, forming chains propagating along [01] and enclosing R22(4) ring motifs (Table 1 and Fig. 2). The chains are linked via C—H⋯O hydrogen bonds, forming a supramolecular three-dimensional framework structure (Table 1 and Fig. 3).
Synthesis and crystallization
The title Schiff base was prepared by condensation between 1,8-diaminooctane (72 mg, 0.5 mmol) and 2-hydroxy-1-naphthaldehyde (172 mg, 1 mmol) in methanol (10 ml). The mixture was refluxed and stirred under a nitrogen atmosphere for 2 h. The precipitate obtained was filtered, washed with methanol and diethyl ether and dried in vacuum overnight. Yellow single crystals of the title compound were obtained by slow evaporation of a solution in methanol (yield 71%; m.p. 438–440 K). Elemental analysis: calculated for C30H32O2N2: C 79.63, H 7.23, N 6.16%; found: C 79.61, H 7.13, N 6.19%.
1H NMR: (DMSO-d6, δ p.p.m.): 14.12 (C—OH), 9.07 (s, CH=N), 6.40–8.40 (m, ArH), 1.00–4.00 (m, aliphH); 13C NMR: (DMSO-d6, δ p.p.m.): 178.04 (C—O), 159.35 (CH=N), 100–140 (C—Ar), 23.57–55.12 (C-aliphat). The DEPT-135 spectrum shows a disappearance of resonances at 106.07, 125.46, 134.81 and 178.28 p.p.m.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1530499
https://doi.org/10.1107/S2414314617001699/su4126sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617001699/su4126Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617001699/su4126Isup3.cml
Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C30H32N2O2 | F(000) = 968 |
Mr = 452.58 | Dx = 1.258 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6936 reflections |
a = 18.0993 (12) Å | θ = 2.3–28.0° |
b = 14.2646 (9) Å | µ = 0.08 mm−1 |
c = 9.5990 (6) Å | T = 173 K |
β = 105.345 (1)° | Prism, yellow |
V = 2389.9 (3) Å3 | 0.35 × 0.25 × 0.20 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2907 independent reflections |
Radiation source: fine-focus sealed tube | 2159 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
φ and ω scans | θmax = 28.1°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2010) | h = −22→23 |
Tmin = 0.973, Tmax = 0.985 | k = −18→14 |
20784 measured reflections | l = −12→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.146 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0442P)2 + 2.0625P] where P = (Fo2 + 2Fc2)/3 |
2907 reflections | (Δ/σ)max < 0.001 |
158 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.03219 (9) | 1.19048 (15) | 0.05578 (16) | 0.0474 (5) | |
C2 | 0.01367 (10) | 1.27725 (17) | −0.02317 (18) | 0.0576 (6) | |
H2 | −0.0178 | 1.2756 | −0.1196 | 0.069* | |
C3 | 0.03949 (10) | 1.35977 (17) | 0.0356 (2) | 0.0595 (6) | |
H3 | 0.0264 | 1.4148 | −0.0214 | 0.071* | |
C4 | 0.08643 (9) | 1.36885 (14) | 0.18190 (19) | 0.0488 (4) | |
C5 | 0.10920 (11) | 1.45675 (16) | 0.2428 (2) | 0.0610 (5) | |
H5 | 0.0944 | 1.5117 | 0.1863 | 0.073* | |
C6 | 0.15275 (11) | 1.46479 (16) | 0.3835 (3) | 0.0628 (6) | |
H6 | 0.1677 | 1.5248 | 0.4242 | 0.075* | |
C7 | 0.17461 (10) | 1.38405 (14) | 0.4656 (2) | 0.0524 (5) | |
H7 | 0.2045 | 1.3893 | 0.5628 | 0.063* | |
C8 | 0.15364 (9) | 1.29760 (13) | 0.40838 (17) | 0.0441 (4) | |
H8 | 0.1696 | 1.2436 | 0.4665 | 0.053* | |
C9 | 0.10847 (8) | 1.28615 (13) | 0.26391 (16) | 0.0401 (4) | |
C10 | 0.08336 (8) | 1.19633 (13) | 0.19953 (15) | 0.0397 (4) | |
C11 | 0.10777 (8) | 1.11267 (13) | 0.27413 (16) | 0.0413 (4) | |
H11 | 0.1414 | 1.1180 | 0.3684 | 0.050* | |
C12 | 0.11699 (10) | 0.94316 (14) | 0.30608 (17) | 0.0478 (4) | |
H12A | 0.0730 | 0.9030 | 0.3101 | 0.057* | |
H12B | 0.1446 | 0.9600 | 0.4064 | 0.057* | |
C13 | 0.17022 (10) | 0.88827 (14) | 0.23865 (17) | 0.0481 (4) | |
H13A | 0.2175 | 0.9251 | 0.2467 | 0.058* | |
H13B | 0.1452 | 0.8790 | 0.1347 | 0.058* | |
C14 | 0.19159 (10) | 0.79304 (14) | 0.30986 (17) | 0.0493 (5) | |
H14A | 0.2201 | 0.7571 | 0.2526 | 0.059* | |
H14B | 0.1439 | 0.7581 | 0.3070 | 0.059* | |
C15 | 0.24003 (9) | 0.79781 (13) | 0.46606 (16) | 0.0461 (4) | |
H15A | 0.2880 | 0.8321 | 0.4694 | 0.055* | |
H15B | 0.2118 | 0.8337 | 0.5237 | 0.055* | |
N1 | 0.08863 (8) | 1.02829 (11) | 0.22613 (15) | 0.0460 (4) | |
O1 | 0.00462 (7) | 1.11356 (11) | −0.00035 (12) | 0.0605 (4) | |
H1N | 0.0548 (13) | 1.0243 (15) | 0.135 (2) | 0.067 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0272 (7) | 0.0888 (14) | 0.0267 (7) | 0.0027 (8) | 0.0080 (6) | −0.0046 (8) |
C2 | 0.0343 (9) | 0.1043 (17) | 0.0311 (8) | 0.0120 (10) | 0.0034 (6) | 0.0074 (10) |
C3 | 0.0359 (9) | 0.0938 (16) | 0.0482 (10) | 0.0212 (10) | 0.0101 (8) | 0.0201 (11) |
C4 | 0.0300 (8) | 0.0695 (13) | 0.0489 (9) | 0.0141 (8) | 0.0141 (7) | 0.0069 (9) |
C5 | 0.0461 (10) | 0.0653 (13) | 0.0736 (13) | 0.0165 (9) | 0.0192 (10) | 0.0100 (11) |
C6 | 0.0490 (11) | 0.0615 (13) | 0.0805 (15) | 0.0027 (9) | 0.0217 (10) | −0.0120 (11) |
C7 | 0.0392 (9) | 0.0656 (12) | 0.0516 (10) | −0.0006 (8) | 0.0108 (8) | −0.0106 (9) |
C8 | 0.0345 (8) | 0.0605 (11) | 0.0371 (8) | 0.0010 (7) | 0.0090 (6) | −0.0031 (7) |
C9 | 0.0237 (7) | 0.0641 (11) | 0.0347 (7) | 0.0066 (7) | 0.0112 (6) | −0.0004 (7) |
C10 | 0.0242 (7) | 0.0693 (11) | 0.0264 (7) | 0.0028 (7) | 0.0081 (5) | −0.0024 (7) |
C11 | 0.0288 (7) | 0.0689 (11) | 0.0266 (7) | −0.0028 (7) | 0.0080 (6) | −0.0065 (7) |
C12 | 0.0483 (10) | 0.0646 (12) | 0.0320 (8) | −0.0091 (8) | 0.0132 (7) | −0.0030 (7) |
C13 | 0.0437 (9) | 0.0713 (12) | 0.0291 (7) | −0.0052 (8) | 0.0092 (7) | 0.0001 (8) |
C14 | 0.0439 (9) | 0.0703 (13) | 0.0301 (8) | −0.0067 (8) | 0.0035 (7) | −0.0045 (8) |
C15 | 0.0367 (8) | 0.0679 (12) | 0.0308 (8) | −0.0134 (8) | 0.0036 (6) | −0.0035 (7) |
N1 | 0.0397 (7) | 0.0694 (10) | 0.0281 (6) | −0.0057 (7) | 0.0076 (5) | −0.0049 (7) |
O1 | 0.0425 (7) | 0.1048 (12) | 0.0307 (6) | −0.0068 (7) | 0.0037 (5) | −0.0135 (7) |
C1—O1 | 1.265 (2) | C10—C11 | 1.402 (2) |
C1—C2 | 1.444 (3) | C11—N1 | 1.303 (2) |
C1—C10 | 1.446 (2) | C11—H11 | 0.9500 |
C2—C3 | 1.335 (3) | C12—N1 | 1.455 (2) |
C2—H2 | 0.9500 | C12—C13 | 1.513 (2) |
C3—C4 | 1.442 (3) | C12—H12A | 0.9900 |
C3—H3 | 0.9500 | C12—H12B | 0.9900 |
C4—C5 | 1.399 (3) | C13—C14 | 1.524 (3) |
C4—C9 | 1.416 (2) | C13—H13A | 0.9900 |
C5—C6 | 1.377 (3) | C13—H13B | 0.9900 |
C5—H5 | 0.9500 | C14—C15 | 1.525 (2) |
C6—C7 | 1.392 (3) | C14—H14A | 0.9900 |
C6—H6 | 0.9500 | C14—H14B | 0.9900 |
C7—C8 | 1.363 (3) | C15—C15i | 1.514 (4) |
C7—H7 | 0.9500 | C15—H15A | 0.9900 |
C8—C9 | 1.421 (2) | C15—H15B | 0.9900 |
C8—H8 | 0.9500 | N1—H1N | 0.93 (2) |
C9—C10 | 1.443 (2) | ||
O1—C1—C2 | 120.62 (15) | N1—C11—C10 | 126.00 (14) |
O1—C1—C10 | 122.48 (18) | N1—C11—H11 | 117.0 |
C2—C1—C10 | 116.90 (18) | C10—C11—H11 | 117.0 |
C3—C2—C1 | 121.84 (16) | N1—C12—C13 | 112.44 (13) |
C3—C2—H2 | 119.1 | N1—C12—H12A | 109.1 |
C1—C2—H2 | 119.1 | C13—C12—H12A | 109.1 |
C2—C3—C4 | 122.73 (19) | N1—C12—H12B | 109.1 |
C2—C3—H3 | 118.6 | C13—C12—H12B | 109.1 |
C4—C3—H3 | 118.6 | H12A—C12—H12B | 107.8 |
C5—C4—C9 | 120.40 (17) | C12—C13—C14 | 112.59 (14) |
C5—C4—C3 | 121.34 (19) | C12—C13—H13A | 109.1 |
C9—C4—C3 | 118.25 (19) | C14—C13—H13A | 109.1 |
C6—C5—C4 | 120.9 (2) | C12—C13—H13B | 109.1 |
C6—C5—H5 | 119.5 | C14—C13—H13B | 109.1 |
C4—C5—H5 | 119.5 | H13A—C13—H13B | 107.8 |
C5—C6—C7 | 119.3 (2) | C13—C14—C15 | 114.38 (15) |
C5—C6—H6 | 120.3 | C13—C14—H14A | 108.7 |
C7—C6—H6 | 120.3 | C15—C14—H14A | 108.7 |
C8—C7—C6 | 120.89 (18) | C13—C14—H14B | 108.7 |
C8—C7—H7 | 119.6 | C15—C14—H14B | 108.7 |
C6—C7—H7 | 119.6 | H14A—C14—H14B | 107.6 |
C7—C8—C9 | 121.64 (17) | C15i—C15—C14 | 113.11 (18) |
C7—C8—H8 | 119.2 | C15i—C15—H15A | 109.0 |
C9—C8—H8 | 119.2 | C14—C15—H15A | 109.0 |
C4—C9—C8 | 116.85 (17) | C15i—C15—H15B | 109.0 |
C4—C9—C10 | 119.43 (15) | C14—C15—H15B | 109.0 |
C8—C9—C10 | 123.70 (16) | H15A—C15—H15B | 107.8 |
C11—C10—C9 | 121.09 (13) | C11—N1—C12 | 124.11 (14) |
C11—C10—C1 | 118.29 (16) | C11—N1—H1N | 116.0 (13) |
C9—C10—C1 | 120.63 (16) | C12—N1—H1N | 119.9 (13) |
O1—C1—C2—C3 | 177.27 (16) | C4—C9—C10—C11 | 176.09 (13) |
C10—C1—C2—C3 | −3.0 (2) | C8—C9—C10—C11 | −5.2 (2) |
C1—C2—C3—C4 | −1.0 (3) | C4—C9—C10—C1 | −3.9 (2) |
C2—C3—C4—C5 | −176.55 (17) | C8—C9—C10—C1 | 174.82 (13) |
C2—C3—C4—C9 | 2.7 (3) | O1—C1—C10—C11 | 5.2 (2) |
C9—C4—C5—C6 | −0.6 (3) | C2—C1—C10—C11 | −174.52 (14) |
C3—C4—C5—C6 | 178.70 (17) | O1—C1—C10—C9 | −174.87 (14) |
C4—C5—C6—C7 | 0.3 (3) | C2—C1—C10—C9 | 5.5 (2) |
C5—C6—C7—C8 | 0.2 (3) | C9—C10—C11—N1 | −179.99 (14) |
C6—C7—C8—C9 | −0.4 (3) | C1—C10—C11—N1 | 0.0 (2) |
C5—C4—C9—C8 | 0.3 (2) | N1—C12—C13—C14 | −172.37 (14) |
C3—C4—C9—C8 | −179.00 (14) | C12—C13—C14—C15 | −66.4 (2) |
C5—C4—C9—C10 | 179.08 (15) | C13—C14—C15—C15i | 179.72 (17) |
C3—C4—C9—C10 | −0.2 (2) | C10—C11—N1—C12 | 178.34 (14) |
C7—C8—C9—C4 | 0.2 (2) | C13—C12—N1—C11 | −111.09 (17) |
C7—C8—C9—C10 | −178.53 (15) |
Symmetry code: (i) −x+1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1 | 0.93 (2) | 1.87 (2) | 2.602 (2) | 133.6 (18) |
N1—H1N···O1ii | 0.93 (2) | 2.44 (2) | 3.115 (2) | 129.6 (17) |
C12—H12A···O1iii | 0.99 | 2.47 | 3.201 (2) | 131 |
Symmetry codes: (ii) −x, −y+2, −z; (iii) x, −y+2, z+1/2. |
Acknowledgements
The authors gratefully acknowledge the help of Dr Jean Weiss from the CLAC laboratory at the Institut de Chimie, Université de Strasbourg, France.
Funding information
Funding for this research was provided by: Ministère de l'Enseignement Supérieur et de la Recherche Scientifiquehttps://doi.org/10.13039/501100002717
References
Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Merzougui, M., Ouari, K. & Weiss, J. (2016). J. Mol. Struct. 1120, 239–244. Web of Science CSD CrossRef CAS Google Scholar
Ouari, K., Bendia, S., Merzougui, M. & Bailly, C. (2015b). Acta Cryst. E71, o51–o52. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ouari, K., Bendia, S., Weiss, J. & Bailly, C. (2015d). Spectrochim. Acta Part A, 135, 624–631. Web of Science CSD CrossRef CAS Google Scholar
Ouari, K., Merzougui, M., Bendia, S. & Bailly, C. (2015a). Acta Cryst. E71, o351–o352. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ouari, K., Merzougui, M. & Karmazin, L. (2015c). Acta Cryst. E71, 1010–1012. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ouari, K., Ourari, A. & Weiss, J. (2010). J. Chem. Crystallogr. 40, 831–836. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.