organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,1′-{(1E,1′E)-[Octane-1,8-diylbis(aza­nylyl­­idene)]bis­­(methanylyl­­idene)}bis­­(naphthalen-2-ol) in the zwitterionic form

CROSSMARK_Color_square_no_text.svg

aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox, Faculty of Technology, University of Ferhat Abbas Sétif-1, 19000-Sétif, Algeria, and bInstitut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg Cedex, France
*Correspondence e-mail: k_ouari@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 January 2017; accepted 31 January 2017; online 3 February 2017)

The title compound, C30H32O2N2, is formed from two units of ortho-hy­droxy­naphthaldehyde bridged with 1,8-di­amino­octane. In the solid state, it exists as a double zwitterion. The N atoms are protonated and the C—O bonds lengths are 1.265 (2) Å, with intra­molecular N—H⋯O hydrogen bonds forming S(6) ring motifs. The mol­ecule has twofold rotational symmetry, with the twofold axis bis­ecting the central –CH2—CH2– bond of the bridging octane chain. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains propagating along the [-201] direction. The chains are linked via C—H⋯O hydrogen bonds, forming a supra­molecular three-dimensional framework structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recently, our group has reported the crystal structures of four new Schiff bases, synthesized using literature methods by reacting primary amines and o-hy­droxy­naphthaldehyde (Merzougui et al., 2016[Merzougui, M., Ouari, K. & Weiss, J. (2016). J. Mol. Struct. 1120, 239-244.]; Ouari et al., 2015a[Ouari, K., Merzougui, M., Bendia, S. & Bailly, C. (2015a). Acta Cryst. E71, o351-o352.],b[Ouari, K., Bendia, S., Merzougui, M. & Bailly, C. (2015b). Acta Cryst. E71, o51-o52.],c[Ouari, K., Merzougui, M. & Karmazin, L. (2015c). Acta Cryst. E71, 1010-1012.]). They crystallize as bis-zwitterionic compounds with strong intra­molecular N—H⋯O hydrogen bonds, forming S(6) ring motifs. Such compounds are of inter­est because the azomethine C=N and C—O groups form stable transition metal complexes by coordinating through the nitro­gen and oxygen atoms (Ouari et al., 2010[Ouari, K., Ourari, A. & Weiss, J. (2010). J. Chem. Crystallogr. 40, 831-836.], 2015d[Ouari, K., Bendia, S., Weiss, J. & Bailly, C. (2015d). Spectrochim. Acta Part A, 135, 624-631.]).

The title compound is formed from two units of ortho-hy­droxy­naphthaldehyde bridged with 1,8-di­amino­octane. The mol­ecule has twofold rotational symmetry with the twofold axis bis­ecting the central –C15—C15i– bond [symmetry code (i): −x + [{1\over 2}], −y + [{3\over 2}], −z + 1]. Atoms N1 and N1i are protonated and the C1—O1 and C1i—O1i bond lengths are 1.265 (2) Å, hence the compound has crystallized as a double zwitterion with intra­molecular N—H⋯O hydrogen bonds forming S(6) ring motifs (Table 1[link] and Fig. 1[link]). This is similar to the structures of the compounds mentioned above.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.93 (2) 1.87 (2) 2.602 (2) 133.6 (18)
N1—H1N⋯O1ii 0.93 (2) 2.44 (2) 3.115 (2) 129.6 (17)
C12—H12A⋯O1iii 0.99 2.47 3.201 (2) 131
Symmetry codes: (ii) -x, -y+2, -z; (iii) [x, -y+2, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related to the labelled atoms by twofold rotation symmetry (−x + [{1\over 2}], −y + [{3\over 2}], −z + 1). The intra­molecular N—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]).

In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains propagating along [[\overline{2}]01] and enclosing R22(4) ring motifs (Table 1[link] and Fig. 2[link]). The chains are linked via C—H⋯O hydrogen bonds, forming a supra­molecular three-dimensional framework structure (Table 1[link] and Fig. 3[link]).

[Figure 2]
Figure 2
A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and for clarity, only H atoms H1N and H12A (grey balls) have been included.
[Figure 3]
Figure 3
Crystal packing of the title compound, viewed along the c axis. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and for clarity, only H atoms H1N and H12A (grey balls) have been included.

Synthesis and crystallization

The title Schiff base was prepared by condensation between 1,8-di­amino­octane (72 mg, 0.5 mmol) and 2-hy­droxy-1-naphthaldehyde (172 mg, 1 mmol) in methanol (10 ml). The mixture was refluxed and stirred under a nitro­gen atmosphere for 2 h. The precipitate obtained was filtered, washed with methanol and diethyl ether and dried in vacuum overnight. Yellow single crystals of the title compound were obtained by slow evaporation of a solution in methanol (yield 71%; m.p. 438–440 K). Elemental analysis: calculated for C30H32O2N2: C 79.63, H 7.23, N 6.16%; found: C 79.61, H 7.13, N 6.19%.

1H NMR: (DMSO-d6, δ p.p.m.): 14.12 (C—OH), 9.07 (s, CH=N), 6.40–8.40 (m, ArH), 1.00–4.00 (m, aliphH); 13C NMR: (DMSO-d6, δ p.p.m.): 178.04 (C—O), 159.35 (CH=N), 100–140 (C—Ar), 23.57–55.12 (C-aliphat). The DEPT-135 spectrum shows a disappearance of resonances at 106.07, 125.46, 134.81 and 178.28 p.p.m.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C30H32N2O2
Mr 452.58
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 18.0993 (12), 14.2646 (9), 9.5990 (6)
β (°) 105.345 (1)
V3) 2389.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.35 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.973, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 20784, 2907, 2159
Rint 0.025
(sin θ/λ)max−1) 0.663
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.146, 1.13
No. of reflections 2907
No. of parameters 158
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1,1'-{(1E,1'E)-[Octane-1,8-diylbis(azanylylidene)]bis(methanylylidene)}bis(naphthalen-2-ol) in the zwitterion form top
Crystal data top
C30H32N2O2F(000) = 968
Mr = 452.58Dx = 1.258 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6936 reflections
a = 18.0993 (12) Åθ = 2.3–28.0°
b = 14.2646 (9) ŵ = 0.08 mm1
c = 9.5990 (6) ÅT = 173 K
β = 105.345 (1)°Prism, yellow
V = 2389.9 (3) Å30.35 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2907 independent reflections
Radiation source: fine-focus sealed tube2159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 28.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 2223
Tmin = 0.973, Tmax = 0.985k = 1814
20784 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0442P)2 + 2.0625P]
where P = (Fo2 + 2Fc2)/3
2907 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.03219 (9)1.19048 (15)0.05578 (16)0.0474 (5)
C20.01367 (10)1.27725 (17)0.02317 (18)0.0576 (6)
H20.01781.27560.11960.069*
C30.03949 (10)1.35977 (17)0.0356 (2)0.0595 (6)
H30.02641.41480.02140.071*
C40.08643 (9)1.36885 (14)0.18190 (19)0.0488 (4)
C50.10920 (11)1.45675 (16)0.2428 (2)0.0610 (5)
H50.09441.51170.18630.073*
C60.15275 (11)1.46479 (16)0.3835 (3)0.0628 (6)
H60.16771.52480.42420.075*
C70.17461 (10)1.38405 (14)0.4656 (2)0.0524 (5)
H70.20451.38930.56280.063*
C80.15364 (9)1.29760 (13)0.40838 (17)0.0441 (4)
H80.16961.24360.46650.053*
C90.10847 (8)1.28615 (13)0.26391 (16)0.0401 (4)
C100.08336 (8)1.19633 (13)0.19953 (15)0.0397 (4)
C110.10777 (8)1.11267 (13)0.27413 (16)0.0413 (4)
H110.14141.11800.36840.050*
C120.11699 (10)0.94316 (14)0.30608 (17)0.0478 (4)
H12A0.07300.90300.31010.057*
H12B0.14460.96000.40640.057*
C130.17022 (10)0.88827 (14)0.23865 (17)0.0481 (4)
H13A0.21750.92510.24670.058*
H13B0.14520.87900.13470.058*
C140.19159 (10)0.79304 (14)0.30986 (17)0.0493 (5)
H14A0.22010.75710.25260.059*
H14B0.14390.75810.30700.059*
C150.24003 (9)0.79781 (13)0.46606 (16)0.0461 (4)
H15A0.28800.83210.46940.055*
H15B0.21180.83370.52370.055*
N10.08863 (8)1.02829 (11)0.22613 (15)0.0460 (4)
O10.00462 (7)1.11356 (11)0.00035 (12)0.0605 (4)
H1N0.0548 (13)1.0243 (15)0.135 (2)0.067 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (7)0.0888 (14)0.0267 (7)0.0027 (8)0.0080 (6)0.0046 (8)
C20.0343 (9)0.1043 (17)0.0311 (8)0.0120 (10)0.0034 (6)0.0074 (10)
C30.0359 (9)0.0938 (16)0.0482 (10)0.0212 (10)0.0101 (8)0.0201 (11)
C40.0300 (8)0.0695 (13)0.0489 (9)0.0141 (8)0.0141 (7)0.0069 (9)
C50.0461 (10)0.0653 (13)0.0736 (13)0.0165 (9)0.0192 (10)0.0100 (11)
C60.0490 (11)0.0615 (13)0.0805 (15)0.0027 (9)0.0217 (10)0.0120 (11)
C70.0392 (9)0.0656 (12)0.0516 (10)0.0006 (8)0.0108 (8)0.0106 (9)
C80.0345 (8)0.0605 (11)0.0371 (8)0.0010 (7)0.0090 (6)0.0031 (7)
C90.0237 (7)0.0641 (11)0.0347 (7)0.0066 (7)0.0112 (6)0.0004 (7)
C100.0242 (7)0.0693 (11)0.0264 (7)0.0028 (7)0.0081 (5)0.0024 (7)
C110.0288 (7)0.0689 (11)0.0266 (7)0.0028 (7)0.0080 (6)0.0065 (7)
C120.0483 (10)0.0646 (12)0.0320 (8)0.0091 (8)0.0132 (7)0.0030 (7)
C130.0437 (9)0.0713 (12)0.0291 (7)0.0052 (8)0.0092 (7)0.0001 (8)
C140.0439 (9)0.0703 (13)0.0301 (8)0.0067 (8)0.0035 (7)0.0045 (8)
C150.0367 (8)0.0679 (12)0.0308 (8)0.0134 (8)0.0036 (6)0.0035 (7)
N10.0397 (7)0.0694 (10)0.0281 (6)0.0057 (7)0.0076 (5)0.0049 (7)
O10.0425 (7)0.1048 (12)0.0307 (6)0.0068 (7)0.0037 (5)0.0135 (7)
Geometric parameters (Å, º) top
C1—O11.265 (2)C10—C111.402 (2)
C1—C21.444 (3)C11—N11.303 (2)
C1—C101.446 (2)C11—H110.9500
C2—C31.335 (3)C12—N11.455 (2)
C2—H20.9500C12—C131.513 (2)
C3—C41.442 (3)C12—H12A0.9900
C3—H30.9500C12—H12B0.9900
C4—C51.399 (3)C13—C141.524 (3)
C4—C91.416 (2)C13—H13A0.9900
C5—C61.377 (3)C13—H13B0.9900
C5—H50.9500C14—C151.525 (2)
C6—C71.392 (3)C14—H14A0.9900
C6—H60.9500C14—H14B0.9900
C7—C81.363 (3)C15—C15i1.514 (4)
C7—H70.9500C15—H15A0.9900
C8—C91.421 (2)C15—H15B0.9900
C8—H80.9500N1—H1N0.93 (2)
C9—C101.443 (2)
O1—C1—C2120.62 (15)N1—C11—C10126.00 (14)
O1—C1—C10122.48 (18)N1—C11—H11117.0
C2—C1—C10116.90 (18)C10—C11—H11117.0
C3—C2—C1121.84 (16)N1—C12—C13112.44 (13)
C3—C2—H2119.1N1—C12—H12A109.1
C1—C2—H2119.1C13—C12—H12A109.1
C2—C3—C4122.73 (19)N1—C12—H12B109.1
C2—C3—H3118.6C13—C12—H12B109.1
C4—C3—H3118.6H12A—C12—H12B107.8
C5—C4—C9120.40 (17)C12—C13—C14112.59 (14)
C5—C4—C3121.34 (19)C12—C13—H13A109.1
C9—C4—C3118.25 (19)C14—C13—H13A109.1
C6—C5—C4120.9 (2)C12—C13—H13B109.1
C6—C5—H5119.5C14—C13—H13B109.1
C4—C5—H5119.5H13A—C13—H13B107.8
C5—C6—C7119.3 (2)C13—C14—C15114.38 (15)
C5—C6—H6120.3C13—C14—H14A108.7
C7—C6—H6120.3C15—C14—H14A108.7
C8—C7—C6120.89 (18)C13—C14—H14B108.7
C8—C7—H7119.6C15—C14—H14B108.7
C6—C7—H7119.6H14A—C14—H14B107.6
C7—C8—C9121.64 (17)C15i—C15—C14113.11 (18)
C7—C8—H8119.2C15i—C15—H15A109.0
C9—C8—H8119.2C14—C15—H15A109.0
C4—C9—C8116.85 (17)C15i—C15—H15B109.0
C4—C9—C10119.43 (15)C14—C15—H15B109.0
C8—C9—C10123.70 (16)H15A—C15—H15B107.8
C11—C10—C9121.09 (13)C11—N1—C12124.11 (14)
C11—C10—C1118.29 (16)C11—N1—H1N116.0 (13)
C9—C10—C1120.63 (16)C12—N1—H1N119.9 (13)
O1—C1—C2—C3177.27 (16)C4—C9—C10—C11176.09 (13)
C10—C1—C2—C33.0 (2)C8—C9—C10—C115.2 (2)
C1—C2—C3—C41.0 (3)C4—C9—C10—C13.9 (2)
C2—C3—C4—C5176.55 (17)C8—C9—C10—C1174.82 (13)
C2—C3—C4—C92.7 (3)O1—C1—C10—C115.2 (2)
C9—C4—C5—C60.6 (3)C2—C1—C10—C11174.52 (14)
C3—C4—C5—C6178.70 (17)O1—C1—C10—C9174.87 (14)
C4—C5—C6—C70.3 (3)C2—C1—C10—C95.5 (2)
C5—C6—C7—C80.2 (3)C9—C10—C11—N1179.99 (14)
C6—C7—C8—C90.4 (3)C1—C10—C11—N10.0 (2)
C5—C4—C9—C80.3 (2)N1—C12—C13—C14172.37 (14)
C3—C4—C9—C8179.00 (14)C12—C13—C14—C1566.4 (2)
C5—C4—C9—C10179.08 (15)C13—C14—C15—C15i179.72 (17)
C3—C4—C9—C100.2 (2)C10—C11—N1—C12178.34 (14)
C7—C8—C9—C40.2 (2)C13—C12—N1—C11111.09 (17)
C7—C8—C9—C10178.53 (15)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.93 (2)1.87 (2)2.602 (2)133.6 (18)
N1—H1N···O1ii0.93 (2)2.44 (2)3.115 (2)129.6 (17)
C12—H12A···O1iii0.992.473.201 (2)131
Symmetry codes: (ii) x, y+2, z; (iii) x, y+2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the help of Dr Jean Weiss from the CLAC laboratory at the Institut de Chimie, Université de Strasbourg, France.

Funding information

Funding for this research was provided by: Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

References

First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMerzougui, M., Ouari, K. & Weiss, J. (2016). J. Mol. Struct. 1120, 239–244.  Web of Science CSD CrossRef CAS Google Scholar
First citationOuari, K., Bendia, S., Merzougui, M. & Bailly, C. (2015b). Acta Cryst. E71, o51–o52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuari, K., Bendia, S., Weiss, J. & Bailly, C. (2015d). Spectrochim. Acta Part A, 135, 624–631.  Web of Science CSD CrossRef CAS Google Scholar
First citationOuari, K., Merzougui, M., Bendia, S. & Bailly, C. (2015a). Acta Cryst. E71, o351–o352.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuari, K., Merzougui, M. & Karmazin, L. (2015c). Acta Cryst. E71, 1010–1012.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuari, K., Ourari, A. & Weiss, J. (2010). J. Chem. Crystallogr. 40, 831–836.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds