organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-[(3-Bromo-1-phenyl­sulfonyl-1H-indol-2-yl)meth­yl]-4-fluoro­aniline

aDepartment of Chemistry, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 10 December 2016; accepted 28 January 2017; online 3 February 2017)

In the title compound, C21H16BrFN2O2S, the indole ring system makes dihedral angles of 87.23 (10) and 77.58 (9)° with the fluoro­benzene and phenyl rings, respectively. The mol­ecular structure is stabilized by a C—H⋯O and a C—H⋯Br intra­molecular hydrogen bond, which generate S(6) and S(8) ring motifs, respectively. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming ribbons propagating along the a-axis direction. Within the ribbons, there are offset ππ inter­actions present involving inversion-related mol­ecules [inter­centroid distance = 3.650 (1) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indole is an important heterocyclic system because it is built into proteins in the form of the amino acid tryptophan as well as being the basis of drugs such as indomethacin and providing the skeleton of indole alkaloids, the biologically active compounds from plants (Sharma et al., 2010[Sharma, V., Kumar, P. & Pathak, D. (2010). J. Heterocycl. Chem. 47, 491-502.]). As part of our investigations of indole derivatives, we have undertaken the synthesis and crystal structure analysis of the title compound.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The mol­ecular structure is stabilized by a C—H⋯O and a C—H⋯Br intra­molecular hydrogen bond, which generate S(6) and S(8) ring motifs, respectively (Fig. 1[link] and Table 1[link]). The indole ring system (N2/C8–C15) adopts a planar conformation with a maximum deviation of 0.0340 (1) Å for atom C11. Atom F1 deviates by 0.0107 (1) Å from the plane of the benzene ring (C1–C6) to which it is attached. The mean plane of the indole ring system makes dihedral angles of 87.23 (10) and 77.58 (9)° with the fluoro­benzene and phenyl (C16–C21) rings, respectively. The fluoro­benzene and phenyl rings are inclined to one another by 81.44 (11)°. The indole and fluoro­benzene rings are connected through the atoms N1 and C7 with torsion angle C8—C7—N1—C4 = 66.9 (3)°. Atom S1 has a distorted tetra­hedral configuration. The widening of angle O1—S1—O2 = 119.87 (10) ° and narrowing of angle N2—S1—C16 = 105.53 (8)° from the ideal tetra­hedral value are attributed to the Thorpe–Ingold effect (Bassindale, 1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of rings C1-C6 and C16–C21, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Br1 0.93 2.92 3.765 (2) 151
C12—H12⋯O1 0.93 2.38 2.957 (3) 120
C13—H13⋯Cg2i 0.93 2.90 3.8382 (3) 151
C15—H15⋯Cg4ii 0.93 2.72 3.6522 (2) 154
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+2, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and with displacement ellipsoids drawn at 30% probability level. Hydrogen bonds are shown as dashed lines

In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming ribbons propagating along the a-axis direction (Table 1[link] and Fig. 2[link]). Within the ribbons there are offset ππ inter­actions involving inversion-related mol­ecules [Cg3⋯Cg3iii = 3.650 (1) Å; Cg3 is the centroid of the C10-C15 ring; inter­planar distance = 3.440 (1) Å; slippage 1.22 Å; symmetry code: (iii) −x + 2, −y + 2, −z + 1].

[Figure 2]
Figure 2
A partial view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines, C—H⋯π inter­actions as blue dashed arrows and ππ inter­actions as orange dashed double arrows. H atoms not involved in these inter­actions have been excluded for clarity.

Synthesis and crystallization

A solution of 1-phenyl­sulfonyl-2-bromo­methyl-3-bromo­indole (1.07 g, 2.5 mmol, 1.0 equiv) and 4-fluoro­aniline (0.27 g, 2.5 mmol, 1.0 equiv) in dry DMF (10 ml) containing finely powdered K2CO3 (0.69 g, 5.0 mmol, 2.0 equiv) was stirred at room temperature for 12 h. The reaction mixture was then poured onto ice (200 g) and the solid formed was filtered immediately and washed with an excess of water. The crude product was dried over CaCl2 and recrystallized from ethyl acetate–hexane (1: 9) to give a half-white coloured solid in 72% yield. Block-like colourless crystals were obtained by slow evaporation of a solution in CH3OH.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H16BrFN2O2S
Mr 459.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.1732 (5), 10.5828 (7), 12.1781 (8)
α, β, γ (°) 113.699 (1), 94.617 (1), 99.203 (1)
V3) 939.81 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.33
Crystal size (mm) 0.24 × 0.19 × 0.12
 
Data collection
Diffractometer Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.753, 0.856
No. of measured, independent and observed [I > 2σ(I)] reflections 11107, 4427, 3778
Rint 0.018
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.096, 1.05
No. of reflections 4427
No. of parameters 253
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.40
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and SHELXL2016 (Sheldrick, 2015).

N-[(3-Bromo-1-phenylsulfonyl-1H-indol-2-yl)methyl]-4-fluoroaniline top
Crystal data top
C21H16BrFN2O2SZ = 2
Mr = 459.33F(000) = 464
Triclinic, P1Dx = 1.623 Mg m3
a = 8.1732 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5828 (7) ÅCell parameters from 4427 reflections
c = 12.1781 (8) Åθ = 2.2–28.3°
α = 113.699 (1)°µ = 2.33 mm1
β = 94.617 (1)°T = 293 K
γ = 99.203 (1)°Block, colourless
V = 939.81 (11) Å30.24 × 0.19 × 0.12 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3778 reflections with I > 2σ(I)
ω and φ scansRint = 0.018
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 28.3°, θmin = 2.2°
Tmin = 0.753, Tmax = 0.856h = 1010
11107 measured reflectionsk = 1313
4427 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.1305P]
where P = (Fo2 + 2Fc2)/3
4427 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0439 (3)0.3846 (2)0.3063 (2)0.0524 (5)
C20.8963 (3)0.4075 (2)0.3480 (2)0.0510 (5)
H20.8707100.3915390.4150050.061*
C30.7849 (3)0.4548 (2)0.2890 (2)0.0466 (4)
H30.6844930.4711930.3172080.056*
C40.8213 (3)0.47778 (19)0.18896 (17)0.0433 (4)
C50.9754 (3)0.4538 (3)0.1506 (2)0.0599 (6)
H51.0037600.4708520.0846430.072*
C61.0853 (3)0.4057 (3)0.2082 (2)0.0613 (6)
H61.1857300.3879840.1805670.074*
C70.5735 (3)0.5820 (2)0.17222 (19)0.0491 (5)
H7A0.5074160.5211600.2016720.059*
H7B0.5009650.5878210.1080600.059*
C80.6282 (2)0.7267 (2)0.27416 (17)0.0395 (4)
C90.6028 (2)0.7717 (2)0.39091 (18)0.0401 (4)
C100.6911 (2)0.9145 (2)0.46065 (17)0.0396 (4)
C110.7743 (2)0.9561 (2)0.38144 (16)0.0378 (4)
C120.8800 (3)1.0883 (2)0.4218 (2)0.0476 (5)
H120.9366701.1157590.3691500.057*
C130.8966 (3)1.1766 (2)0.5435 (2)0.0562 (5)
H130.9662821.2656940.5729570.067*
C140.8138 (3)1.1379 (2)0.6233 (2)0.0559 (5)
H140.8278491.2010480.7046010.067*
C150.7107 (3)1.0068 (2)0.58341 (18)0.0488 (5)
H150.6552330.9800970.6369370.059*
C160.5460 (2)0.9385 (2)0.13481 (16)0.0372 (4)
C170.5621 (3)1.0827 (2)0.1861 (2)0.0470 (4)
H170.6670341.1420710.2208190.056*
C180.4198 (3)1.1384 (2)0.1854 (2)0.0524 (5)
H180.4289051.2356530.2205890.063*
C190.2653 (3)1.0502 (2)0.1329 (2)0.0493 (5)
H190.1703021.0881320.1323960.059*
C200.2503 (3)0.9069 (3)0.0815 (2)0.0528 (5)
H200.1450910.8480010.0467330.063*
C210.3913 (3)0.8489 (2)0.08082 (19)0.0476 (4)
H210.3818250.7515660.0447440.057*
N10.7090 (2)0.51720 (19)0.12096 (15)0.0522 (4)
H10.7211380.5025320.0476000.063*
N20.73770 (19)0.83989 (17)0.26447 (13)0.0383 (3)
O10.87084 (18)0.9732 (2)0.15578 (15)0.0572 (4)
O20.6999 (2)0.73241 (18)0.03837 (13)0.0560 (4)
F11.1535 (2)0.33908 (19)0.36508 (16)0.0767 (4)
S10.72622 (6)0.86853 (6)0.13829 (4)0.04184 (12)
BR10.47945 (3)0.66201 (3)0.45649 (2)0.05848 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0500 (12)0.0487 (11)0.0578 (12)0.0118 (9)0.0011 (10)0.0229 (10)
C20.0572 (12)0.0466 (11)0.0526 (11)0.0107 (9)0.0073 (10)0.0245 (9)
C30.0459 (10)0.0389 (10)0.0538 (11)0.0094 (8)0.0074 (9)0.0183 (9)
C40.0498 (11)0.0313 (9)0.0393 (9)0.0072 (8)0.0008 (8)0.0073 (7)
C50.0660 (14)0.0713 (15)0.0523 (12)0.0263 (12)0.0186 (11)0.0300 (11)
C60.0515 (12)0.0690 (15)0.0673 (15)0.0207 (11)0.0156 (11)0.0285 (12)
C70.0475 (11)0.0483 (11)0.0452 (10)0.0112 (9)0.0048 (9)0.0152 (9)
C80.0366 (9)0.0442 (10)0.0396 (9)0.0127 (7)0.0033 (7)0.0184 (8)
C90.0362 (9)0.0464 (10)0.0452 (10)0.0126 (8)0.0098 (7)0.0246 (8)
C100.0378 (9)0.0467 (10)0.0391 (9)0.0161 (8)0.0069 (7)0.0203 (8)
C110.0354 (8)0.0440 (10)0.0375 (9)0.0138 (7)0.0038 (7)0.0189 (8)
C120.0465 (11)0.0475 (11)0.0542 (11)0.0104 (8)0.0033 (9)0.0277 (9)
C130.0564 (13)0.0419 (11)0.0628 (13)0.0090 (9)0.0057 (11)0.0178 (10)
C140.0652 (14)0.0527 (12)0.0440 (11)0.0217 (11)0.0033 (10)0.0122 (10)
C150.0551 (12)0.0562 (12)0.0380 (9)0.0203 (10)0.0105 (9)0.0191 (9)
C160.0364 (9)0.0482 (10)0.0335 (8)0.0139 (7)0.0097 (7)0.0212 (8)
C170.0415 (10)0.0477 (11)0.0555 (11)0.0071 (8)0.0031 (9)0.0274 (9)
C180.0535 (12)0.0469 (11)0.0648 (13)0.0168 (9)0.0096 (10)0.0294 (10)
C190.0435 (10)0.0625 (13)0.0545 (12)0.0224 (9)0.0130 (9)0.0322 (10)
C200.0374 (10)0.0606 (13)0.0563 (12)0.0095 (9)0.0012 (9)0.0219 (10)
C210.0459 (11)0.0453 (11)0.0459 (10)0.0112 (8)0.0022 (8)0.0139 (9)
N10.0645 (11)0.0503 (10)0.0374 (8)0.0234 (8)0.0025 (8)0.0109 (7)
N20.0389 (8)0.0460 (8)0.0344 (7)0.0131 (6)0.0060 (6)0.0199 (7)
O10.0391 (7)0.0892 (11)0.0636 (9)0.0172 (7)0.0186 (7)0.0494 (9)
O20.0713 (10)0.0687 (10)0.0383 (7)0.0377 (8)0.0178 (7)0.0227 (7)
F10.0660 (9)0.0927 (11)0.0872 (11)0.0341 (8)0.0043 (8)0.0487 (9)
S10.0396 (2)0.0592 (3)0.0377 (2)0.0207 (2)0.01327 (18)0.0264 (2)
BR10.05446 (15)0.06742 (17)0.06666 (17)0.01190 (11)0.02033 (11)0.03985 (13)
Geometric parameters (Å, º) top
C1—C61.360 (4)C12—C131.379 (3)
C1—F11.363 (3)C12—H120.9300
C1—C21.366 (3)C13—C141.381 (4)
C2—C31.387 (3)C13—H130.9300
C2—H20.9300C14—C151.375 (3)
C3—C41.380 (3)C14—H140.9300
C3—H30.9300C15—H150.9300
C4—C51.403 (3)C16—C171.376 (3)
C4—N11.407 (3)C16—C211.383 (3)
C5—C61.374 (3)C16—S11.7562 (18)
C5—H50.9300C17—C181.386 (3)
C6—H60.9300C17—H170.9300
C7—N11.449 (3)C18—C191.374 (3)
C7—C81.500 (3)C18—H180.9300
C7—H7A0.9700C19—C201.368 (3)
C7—H7B0.9700C19—H190.9300
C8—C91.351 (3)C20—C211.389 (3)
C8—N21.427 (3)C20—H200.9300
C9—C101.431 (3)C21—H210.9300
C9—BR11.8712 (19)N1—H10.8600
C10—C111.392 (3)N2—S11.6799 (15)
C10—C151.397 (3)O1—S11.4215 (17)
C11—C121.392 (3)O2—S11.4324 (17)
C11—N21.427 (2)
C6—C1—F1118.9 (2)C14—C13—C12122.5 (2)
C6—C1—C2122.2 (2)C14—C13—H13118.7
F1—C1—C2118.9 (2)C12—C13—H13118.7
C1—C2—C3119.1 (2)C15—C14—C13120.5 (2)
C1—C2—H2120.4C15—C14—H14119.8
C3—C2—H2120.4C13—C14—H14119.8
C4—C3—C2120.8 (2)C14—C15—C10118.5 (2)
C4—C3—H3119.6C14—C15—H15120.7
C2—C3—H3119.6C10—C15—H15120.7
C3—C4—C5117.71 (19)C17—C16—C21121.15 (18)
C3—C4—N1123.4 (2)C17—C16—S1118.91 (15)
C5—C4—N1118.8 (2)C21—C16—S1119.94 (15)
C6—C5—C4121.6 (2)C16—C17—C18119.11 (19)
C6—C5—H5119.2C16—C17—H17120.4
C4—C5—H5119.2C18—C17—H17120.4
C1—C6—C5118.5 (2)C19—C18—C17120.2 (2)
C1—C6—H6120.7C19—C18—H18119.9
C5—C6—H6120.7C17—C18—H18119.9
N1—C7—C8114.88 (17)C20—C19—C18120.40 (19)
N1—C7—H7A108.5C20—C19—H19119.8
C8—C7—H7A108.5C18—C19—H19119.8
N1—C7—H7B108.5C19—C20—C21120.4 (2)
C8—C7—H7B108.5C19—C20—H20119.8
H7A—C7—H7B107.5C21—C20—H20119.8
C9—C8—N2107.46 (17)C16—C21—C20118.8 (2)
C9—C8—C7128.96 (19)C16—C21—H21120.6
N2—C8—C7123.22 (18)C20—C21—H21120.6
C8—C9—C10110.49 (17)C4—N1—C7121.22 (18)
C8—C9—BR1125.55 (16)C4—N1—H1119.4
C10—C9—BR1123.88 (14)C7—N1—H1119.4
C11—C10—C15120.12 (19)C11—N2—C8107.49 (15)
C11—C10—C9106.54 (16)C11—N2—S1120.22 (13)
C15—C10—C9133.28 (19)C8—N2—S1122.79 (13)
C12—C11—C10121.47 (18)O1—S1—O2119.87 (10)
C12—C11—N2130.41 (18)O1—S1—N2106.12 (9)
C10—C11—N2108.01 (16)O2—S1—N2106.04 (9)
C13—C12—C11116.9 (2)O1—S1—C16109.28 (10)
C13—C12—H12121.6O2—S1—C16109.01 (9)
C11—C12—H12121.6N2—S1—C16105.53 (8)
C6—C1—C2—C30.5 (3)C21—C16—C17—C181.2 (3)
F1—C1—C2—C3179.51 (19)S1—C16—C17—C18178.91 (17)
C1—C2—C3—C40.4 (3)C16—C17—C18—C190.7 (3)
C2—C3—C4—C51.0 (3)C17—C18—C19—C200.3 (3)
C2—C3—C4—N1175.91 (18)C18—C19—C20—C210.5 (4)
C3—C4—C5—C61.6 (3)C17—C16—C21—C201.4 (3)
N1—C4—C5—C6175.4 (2)S1—C16—C21—C20178.72 (17)
F1—C1—C6—C5178.9 (2)C19—C20—C21—C161.1 (3)
C2—C1—C6—C51.0 (4)C3—C4—N1—C721.2 (3)
C4—C5—C6—C11.6 (4)C5—C4—N1—C7162.0 (2)
N1—C7—C8—C9118.5 (2)C8—C7—N1—C466.9 (3)
N1—C7—C8—N253.7 (3)C12—C11—N2—C8176.79 (19)
N2—C8—C9—C100.9 (2)C10—C11—N2—C80.68 (19)
C7—C8—C9—C10174.02 (18)C12—C11—N2—S136.0 (3)
N2—C8—C9—BR1176.08 (12)C10—C11—N2—S1147.90 (13)
C7—C8—C9—BR13.0 (3)C9—C8—N2—C110.97 (19)
C8—C9—C10—C110.5 (2)C7—C8—N2—C11174.58 (16)
BR1—C9—C10—C11176.56 (13)C9—C8—N2—S1147.16 (14)
C8—C9—C10—C15177.6 (2)C7—C8—N2—S139.2 (2)
BR1—C9—C10—C150.6 (3)C11—N2—S1—O147.52 (16)
C15—C10—C11—C120.9 (3)C8—N2—S1—O1170.39 (15)
C9—C10—C11—C12176.67 (17)C11—N2—S1—O2176.02 (14)
C15—C10—C11—N2177.44 (16)C8—N2—S1—O241.89 (17)
C9—C10—C11—N20.15 (19)C11—N2—S1—C1668.41 (15)
C10—C11—C12—C130.8 (3)C8—N2—S1—C1673.69 (16)
N2—C11—C12—C13176.45 (18)C17—C16—S1—O120.95 (18)
C11—C12—C13—C140.1 (3)C21—C16—S1—O1158.89 (16)
C12—C13—C14—C150.5 (3)C17—C16—S1—O2153.69 (16)
C13—C14—C15—C100.4 (3)C21—C16—S1—O226.15 (18)
C11—C10—C15—C140.3 (3)C17—C16—S1—N292.79 (16)
C9—C10—C15—C14176.5 (2)C21—C16—S1—N287.37 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of rings C1-C6 and C16–C21, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Br10.932.923.765 (2)151
C12—H12···O10.932.382.957 (3)120
C13—H13···Cg2i0.932.903.8382 (3)151
C15—H15···Cg4ii0.932.723.6522 (2)154
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

CSY thanks VIT University for support. The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSharma, V., Kumar, P. & Pathak, D. (2010). J. Heterocycl. Chem. 47, 491–502.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds