organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Patchouli alcohol: 4α,8aβ,9,9-tetra­methyl-3,4,4aβ,5,6β,7,8,8a-octa­hydro-1,6-methano­naphthalen-1β(2H)-ol

aFaculty of Pharmaceutical Science, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 3500295, Japan
*Correspondence e-mail: yinoue@josai.ac.jp

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 29 August 2016; accepted 3 February 2017; online 10 February 2017)

The title compound, C15H26O, commonly known as Patchouli alcohol or Patchoulol, is a tri­cyclo­[5.3.1.03,8]undecane. It crystallized in the enanti­omer-defining hexa­gonal space group P63. However, the absolute structure could not be determined [absolute structure parameter = 0.4 (10)]. In the crystal, three mol­ecules are linked by O—H⋯O hydrogen bonds, forming a trimer with an R33(6) ring motif. The crystal structure of patchouli alcohol determined by the crystalline inclusion method, using 1,1,6,6-tetra­phenyl­hexa-2,4-diyne-1,6-diol as host, has been reported [Tong et al., (2013[Tong, J., Yuan, L., Guo, F., Wang, Z.-H., Jin, L. & Guo, W.-S. (2013). Nat. Prod. Res. 27, 32-36.]). Nat. Prod. Res. 27, 32–36].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Sources of patchouli alcohol include Pogostemon cablin Benth., an aromatic medicinal plant of industrial importance (Swamy & Sinniah, 2015[Swamy, M. K. & Sinniah, U. R. (2015). Molecules, 20, 8521-8547.]). It has been investigated for its anti-photoaging action using a mouse model (Feng et al., 2014[Feng, X.-X., Yu, X.-T., Li, W.-J., Kong, S.-Z., Liu, Y.-H., Zhang, X., Xian, Y.-F., Zhang, X.-J., Su, Z.-R. & Lin, Z.-X. (2014). Eur. J. Pharm. Sci. 63, 113-123.]). The crystal structure of patchouli alcohol, obtained by the inclusion crystalline method, using 1,1,6,6-tetra­phenyl­hexa-2,4-diyne-1,6-diol as host, has been reported (Tong et al., 2013[Tong, J., Yuan, L., Guo, F., Wang, Z.-H., Jin, L. & Guo, W.-S. (2013). Nat. Prod. Res. 27, 32-36.]).

The title compound, Fig. 1[link], is known commonly as Patchouli alcohol or Patchoulol. It crystallized in the enanti­omer-defining space group P63. However, the absolute structure could not be determined [absolute structure parameter = 0.4 (10)]

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, three mol­ecules are linked by O—H⋯O hydrogen bonds, forming a trimer with a [R_{3}^{3}](6) ring motif (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.84 2.07 2.818 (3) 147
Symmetry code: (i) -y+1, x-y, z.
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. The O—H⋯O hydrogen bonds are drawn as dashed lines (see Table 1[link]).

Synthesis and crystallization

Block-like colourless crystals of the title compound were provided by Malya Optima, Indonesia.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H26O
Mr 222.37
Crystal system, space group Hexagonal, P63
Temperature (K) 173
a, c (Å) 16.2421 (10), 8.9182 (6)
V3) 2037.5 (2)
Z 6
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.30 × 0.25 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.562, 0.994
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 20092, 3098, 2046
Rint 0.122
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.136, 1.03
No. of reflections 3098
No. of parameters 150
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.20
Absolute structure Flack x determined using 616 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.4 (10)
Computer programs: RAPID-AUTO and CrystalStructure (Rigaku, 2015[Rigaku (2015). RAPID-AUTO and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2015); cell refinement: RAPID-AUTO (Rigaku, 2015); data reduction: RAPID-AUTO (Rigaku, 2015); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2015).

4α,8aβ,9,9-Tetramethyl-3,4,4aβ,5,6β,7,8,8a-octahydro-1,6-methanonaphthalen-1β(2H)-ol top
Crystal data top
C15H26ODx = 1.087 Mg m3
Mr = 222.37Mo Kα radiation, λ = 0.71075 Å
Hexagonal, P63Cell parameters from 6783 reflections
a = 16.2421 (10) Åθ = 3.4–27.3°
c = 8.9182 (6) ŵ = 0.07 mm1
V = 2037.5 (2) Å3T = 173 K
Z = 6Block, colourless
F(000) = 744.000.30 × 0.25 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2046 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.122
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 1921
Tmin = 0.562, Tmax = 0.994k = 2121
20092 measured reflectionsl = 1111
3098 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.1619P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3098 reflectionsΔρmax = 0.21 e Å3
150 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack x determined using 616 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.4 (10)
Secondary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72575 (15)0.44897 (15)0.5000 (3)0.0397 (6)
H10.66640.41390.50150.048*
C10.7497 (2)0.5470 (2)0.4884 (4)0.0311 (8)
C20.7078 (2)0.5749 (2)0.6226 (4)0.0329 (9)
C30.6000 (3)0.5307 (3)0.6058 (4)0.0410 (10)
H3A0.57410.54390.69730.049*
H3B0.57070.46090.59600.049*
C40.5733 (2)0.5697 (3)0.4689 (4)0.0444 (10)
H4A0.54860.61150.50160.053*
H4B0.52330.51670.40970.053*
C50.6632 (2)0.6261 (3)0.3733 (4)0.0358 (9)
H50.64620.64660.27800.043*
C60.7090 (2)0.5646 (2)0.3359 (4)0.0331 (9)
C70.7248 (3)0.5403 (3)0.7738 (5)0.0501 (11)
H7A0.68550.47090.77950.060*
H7B0.70760.56910.85570.060*
H7C0.79200.55890.78250.060*
C80.7849 (3)0.6133 (3)0.2137 (5)0.0471 (10)
H8A0.75480.61810.12140.056*
H8B0.81590.57580.19450.056*
H8C0.83240.67720.24730.056*
C90.6332 (3)0.4703 (3)0.2642 (5)0.0465 (10)
H9A0.66330.43430.22990.056*
H9B0.60410.48400.17870.056*
H9C0.58420.43280.33860.056*
C100.7307 (3)0.7139 (3)0.4649 (5)0.0392 (9)
H10A0.70110.75360.48200.047*
H10B0.79040.75230.40820.047*
C110.7535 (2)0.6844 (2)0.6179 (4)0.0343 (9)
H110.72350.70340.69850.041*
C120.8608 (2)0.7346 (2)0.6484 (5)0.0416 (10)
H120.87030.71080.74660.050*
C130.9093 (2)0.7073 (2)0.5281 (5)0.0436 (10)
H13A0.97600.73020.55820.052*
H13B0.91040.73920.43290.052*
C140.8592 (2)0.5994 (2)0.5017 (5)0.0393 (9)
H14A0.87600.57040.58530.047*
H14B0.88500.58780.40860.047*
C150.9055 (3)0.8427 (3)0.6610 (6)0.0609 (13)
H15A0.89560.86790.56710.073*
H15B0.97380.87150.68020.073*
H15C0.87560.85790.74380.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0311 (13)0.0266 (12)0.0585 (17)0.0122 (10)0.0067 (14)0.0006 (13)
C10.0289 (18)0.0265 (17)0.037 (2)0.0132 (14)0.0043 (18)0.0007 (17)
C20.034 (2)0.032 (2)0.029 (2)0.0133 (17)0.0036 (17)0.0032 (16)
C30.037 (2)0.043 (2)0.036 (2)0.0150 (18)0.0063 (18)0.0003 (18)
C40.034 (2)0.060 (2)0.044 (3)0.0272 (18)0.0012 (19)0.005 (2)
C50.038 (2)0.051 (2)0.029 (2)0.0302 (19)0.0032 (16)0.0029 (17)
C60.032 (2)0.040 (2)0.030 (2)0.0197 (18)0.0013 (16)0.0009 (16)
C70.058 (3)0.043 (2)0.037 (2)0.016 (2)0.008 (2)0.006 (2)
C80.051 (3)0.056 (3)0.038 (2)0.029 (2)0.0074 (19)0.004 (2)
C90.048 (2)0.056 (3)0.037 (2)0.026 (2)0.0090 (19)0.011 (2)
C100.046 (2)0.042 (2)0.040 (2)0.0299 (18)0.0003 (19)0.0025 (19)
C110.040 (2)0.0313 (19)0.031 (2)0.0180 (17)0.0012 (18)0.0007 (16)
C120.040 (2)0.029 (2)0.049 (3)0.0117 (17)0.0101 (19)0.0030 (18)
C130.0272 (19)0.035 (2)0.066 (3)0.0135 (17)0.0091 (19)0.002 (2)
C140.0319 (19)0.0338 (19)0.055 (3)0.0186 (16)0.008 (2)0.003 (2)
C150.057 (3)0.035 (2)0.080 (4)0.014 (2)0.004 (3)0.006 (2)
Geometric parameters (Å, º) top
O1—C11.442 (4)C8—H8A0.9800
O1—H10.8400C8—H8B0.9800
C1—C141.546 (4)C8—H8C0.9800
C1—C21.552 (5)C9—H9A0.9800
C1—C61.599 (5)C9—H9B0.9800
C2—C31.531 (5)C9—H9C0.9800
C2—C71.538 (5)C10—C111.551 (5)
C2—C111.547 (4)C10—H10A0.9900
C3—C41.534 (6)C10—H10B0.9900
C3—H3A0.9900C11—C121.536 (5)
C3—H3B0.9900C11—H111.0000
C4—C51.537 (5)C12—C131.523 (6)
C4—H4A0.9900C12—C151.533 (5)
C4—H4B0.9900C12—H121.0000
C5—C101.530 (5)C13—C141.537 (5)
C5—C61.552 (5)C13—H13A0.9900
C5—H51.0000C13—H13B0.9900
C6—C81.535 (5)C14—H14A0.9900
C6—C91.544 (5)C14—H14B0.9900
C7—H7A0.9800C15—H15A0.9800
C7—H7B0.9800C15—H15B0.9800
C7—H7C0.9800C15—H15C0.9800
C1—O1—H1109.5C6—C8—H8C109.5
O1—C1—C14101.7 (2)H8A—C8—H8C109.5
O1—C1—C2110.6 (3)H8B—C8—H8C109.5
C14—C1—C2109.4 (3)C6—C9—H9A109.5
O1—C1—C6110.6 (3)C6—C9—H9B109.5
C14—C1—C6115.5 (3)H9A—C9—H9B109.5
C2—C1—C6108.9 (2)C6—C9—H9C109.5
C3—C2—C7106.7 (3)H9A—C9—H9C109.5
C3—C2—C11108.4 (3)H9B—C9—H9C109.5
C7—C2—C11111.9 (3)C5—C10—C11110.6 (3)
C3—C2—C1110.7 (3)C5—C10—H10A109.5
C7—C2—C1112.6 (3)C11—C10—H10A109.5
C11—C2—C1106.6 (3)C5—C10—H10B109.5
C2—C3—C4112.2 (3)C11—C10—H10B109.5
C2—C3—H3A109.2H10A—C10—H10B108.1
C4—C3—H3A109.2C12—C11—C2111.7 (3)
C2—C3—H3B109.2C12—C11—C10112.0 (3)
C4—C3—H3B109.2C2—C11—C10109.1 (3)
H3A—C3—H3B107.9C12—C11—H11107.9
C3—C4—C5107.9 (3)C2—C11—H11107.9
C3—C4—H4A110.1C10—C11—H11107.9
C5—C4—H4A110.1C13—C12—C15111.6 (3)
C3—C4—H4B110.1C13—C12—C11109.6 (3)
C5—C4—H4B110.1C15—C12—C11112.5 (3)
H4A—C4—H4B108.4C13—C12—H12107.6
C10—C5—C4106.5 (3)C15—C12—H12107.6
C10—C5—C6111.3 (3)C11—C12—H12107.6
C4—C5—C6110.7 (3)C12—C13—C14112.6 (3)
C10—C5—H5109.4C12—C13—H13A109.1
C4—C5—H5109.4C14—C13—H13A109.1
C6—C5—H5109.4C12—C13—H13B109.1
C8—C6—C9104.7 (3)C14—C13—H13B109.1
C8—C6—C5109.9 (3)H13A—C13—H13B107.8
C9—C6—C5109.0 (3)C13—C14—C1116.6 (3)
C8—C6—C1113.6 (3)C13—C14—H14A108.2
C9—C6—C1111.8 (3)C1—C14—H14A108.2
C5—C6—C1107.8 (3)C13—C14—H14B108.2
C2—C7—H7A109.5C1—C14—H14B108.2
C2—C7—H7B109.5H14A—C14—H14B107.3
H7A—C7—H7B109.5C12—C15—H15A109.5
C2—C7—H7C109.5C12—C15—H15B109.5
H7A—C7—H7C109.5H15A—C15—H15B109.5
H7B—C7—H7C109.5C12—C15—H15C109.5
C6—C8—H8A109.5H15A—C15—H15C109.5
C6—C8—H8B109.5H15B—C15—H15C109.5
H8A—C8—H8B109.5
O1—C1—C2—C373.5 (3)C14—C1—C6—C9130.6 (3)
C14—C1—C2—C3175.2 (3)C2—C1—C6—C9105.9 (3)
C6—C1—C2—C348.1 (3)O1—C1—C6—C5135.6 (3)
O1—C1—C2—C745.7 (4)C14—C1—C6—C5109.6 (3)
C14—C1—C2—C765.5 (4)C2—C1—C6—C513.9 (3)
C6—C1—C2—C7167.4 (3)C4—C5—C10—C1158.4 (4)
O1—C1—C2—C11168.8 (3)C6—C5—C10—C1162.4 (4)
C14—C1—C2—C1157.6 (3)C3—C2—C11—C12174.8 (3)
C6—C1—C2—C1169.5 (3)C7—C2—C11—C1257.5 (4)
C7—C2—C3—C4172.5 (3)C1—C2—C11—C1266.0 (4)
C11—C2—C3—C451.9 (4)C3—C2—C11—C1060.8 (4)
C1—C2—C3—C464.7 (4)C7—C2—C11—C10178.1 (3)
C2—C3—C4—C511.4 (4)C1—C2—C11—C1058.4 (4)
C3—C4—C5—C1067.7 (4)C5—C10—C11—C12129.5 (3)
C3—C4—C5—C653.5 (4)C5—C10—C11—C25.3 (4)
C10—C5—C6—C874.0 (4)C2—C11—C12—C1361.3 (4)
C4—C5—C6—C8167.7 (3)C10—C11—C12—C1361.4 (4)
C10—C5—C6—C9171.8 (3)C2—C11—C12—C15173.8 (4)
C4—C5—C6—C953.5 (4)C10—C11—C12—C1563.4 (4)
C10—C5—C6—C150.3 (4)C15—C12—C13—C14173.9 (3)
C4—C5—C6—C168.0 (3)C11—C12—C13—C1448.6 (4)
O1—C1—C6—C8102.3 (3)C12—C13—C14—C145.6 (5)
C14—C1—C6—C812.4 (4)O1—C1—C14—C13167.2 (4)
C2—C1—C6—C8136.0 (3)C2—C1—C14—C1350.2 (4)
O1—C1—C6—C915.8 (4)C6—C1—C14—C1373.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.842.072.818 (3)147
Symmetry code: (i) y+1, xy, z.
 

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, X.-X., Yu, X.-T., Li, W.-J., Kong, S.-Z., Liu, Y.-H., Zhang, X., Xian, Y.-F., Zhang, X.-J., Su, Z.-R. & Lin, Z.-X. (2014). Eur. J. Pharm. Sci. 63, 113–123.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2015). RAPID-AUTO and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSwamy, M. K. & Sinniah, U. R. (2015). Molecules, 20, 8521–8547.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTong, J., Yuan, L., Guo, F., Wang, Z.-H., Jin, L. & Guo, W.-S. (2013). Nat. Prod. Res. 27, 32–36.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds