organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(3-Bromo­phen­yl)-3-(4-nitro­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Sir M.V. PG Center, University of Mysore, Tubinakere, Mandya 571 402, India, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang 11800 USM, Malaysia, cDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering and Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570 028, India, dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, eInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, and fDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: chidankumar@gmail.com, khalil.i@najah.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 19 February 2017; accepted 20 February 2017; online 24 February 2017)

The title compound, C15H10BrNO3, is close to planar, as seen by the dihedral angle of 3.32 (17)° between the bromo­phenyl and nitro­phenyl rings. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones have attracted considerable inter­est because of their major applications in technologies such as optical computing and optical communication systems (Chidan et al., 2015[Chidan Kumar, C. S., Balachandran, V., Fun, H. K., Chandraju, S. & Quah, C. K. (2015). J. Mol. Struct. 1100, 299-310.]), photonics and optoelectronics. They are also considered to be the precursors of flavonoids and isoflavonoids. Owing to their electronic structure, chalcones also find unique applications as fluorescent probes for sensing metal ions (Kumar et al. 2013[Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013). Molecules, 18, 11996-12011.]). In a continuation of our work on the synthesis of new chalcones and studies of their NLO properties (Tejkiran et al., 2016[Tejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. 324, 33-39.]; Chidan et al. 2016[Chidan Kumar, C. S., Shetty, T. C. S., Chia, T. S., Chandraju, S., Dharmaprakash, S. M., Fun, H. K. & Quah, K. (2016). Mater. Res. Innovations, pp. 1-8.]), we report here the crystal structure of the title compound.

The structure of the mol­ecule is shown in Fig. 1[link]. The mol­ecule is nearly planar, with a dihedral angle of 3.32 (17)° between the bromo­phenyl and the nitro­phenyl rings that are bridged by the enone unit. This value is less than the value of 19.13 (15)° reported earlier between the aromatic rings in the related chalcone derivative (E)-3-(2,3-di­chloro­phen­yl)-1-(4-fluoro­phen­yl)prop-2-en-1-one (Naveen et al., 2016[Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.]). The carbonyl group at C7 lies close to the plane of the olefinic double bond and bromo­phenyl ring as indicated by the O1—C7—C8—C9 and O1—C7—C6—C5 torsion angles of −3.9 (6) and 5.2 (5)° respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

In the crystal, the mol­ecules are linked via weak C—H⋯O hydrogen bonds (Table 1[link]), forming chains propagating along the c-axis direction, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O3i 0.93 2.54 3.354 (4) 147
C14—H14A⋯O1ii 0.93 2.52 3.221 (4) 132
Symmetry codes: (i) x-1, y+1, z; (ii) x+1, y-1, z.
[Figure 2]
Figure 2
The packing of the mol­ecules, viewed along the a axis, with hydrogen bonds drawn as dashed lines.

Synthesis and crystallization

2-Bromo­aceto­phenone (1.99 g, 0.01 mol) was mixed with 4-nitro­benzaldehyde (1.51 g, 0.01 mol) and dissolved in methanol (20 ml). To this, a catalytic amount of NaOH was added slowly, drop-by-drop with constant stirring. The reaction mixture was stirred for 4 h. The resulting crude solid was filtered, washed with distilled water and finally recrystallized from methanol to give the pure chalcone. Single crystals suitable for X-ray diffraction studies were grown by slow evaporation of an acetone solution (m.p. 324–325 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H10BrNO3
Mr 332.14
Crystal system, space group Monoclinic, P21
Temperature (K) 294
a, b, c (Å) 6.0511 (7), 5.0542 (6), 21.841 (3)
β (°) 95.781 (2)
V3) 664.58 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.10
Crystal size (mm) 0.49 × 0.28 × 0.10
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (NUMABS; Rigaku, 1999[Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.312, 0.751
No. of measured, independent and observed [I > 2σ(I)] reflections 8418, 2605, 2325
Rint 0.033
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.06
No. of reflections 2605
No. of parameters 181
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.40
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.028 (11)
Computer programs: CrystalClear SM-Expert (Rigaku, 2011[Rigaku. (2011). CrystalClear SM-Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrystalClear SM-Expert (Rigaku, 2011); cell refinement: CrystalClear SM-Expert (Rigaku, 2011); data reduction: CrystalClear SM-Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(E)-1-(3-Bromophenyl)-3-(4-nitrophenyl)prop-2-en-1-one top
Crystal data top
C15H10BrNO3F(000) = 332
Mr = 332.14Dx = 1.660 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2325 reflections
a = 6.0511 (7) Åθ = 1.9–26.1°
b = 5.0542 (6) ŵ = 3.10 mm1
c = 21.841 (3) ÅT = 294 K
β = 95.781 (2)°Rectangle, brown
V = 664.58 (14) Å30.49 × 0.28 × 0.10 mm
Z = 2
Data collection top
Rigaku Saturn724+
diffractometer
2605 independent reflections
Radiation source: fine-focus sealed tube2325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 18.4 pixels mm-1θmax = 26.1°, θmin = 1.9°
profile data from ω–scansh = 77
Absorption correction: multi-scan
(NUMABS; Rigaku, 1999)
k = 66
Tmin = 0.312, Tmax = 0.751l = 2724
8418 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0421P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2605 reflectionsΔρmax = 0.59 e Å3
181 parametersΔρmin = 0.40 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.028 (11)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.10940 (5)1.49979 (11)0.55889 (2)0.0536 (1)
O10.1299 (4)0.7918 (8)0.74119 (13)0.0805 (13)
O20.8278 (4)0.4766 (7)0.98538 (11)0.0523 (8)
O31.0879 (4)0.4357 (5)0.92554 (12)0.0544 (10)
N10.9084 (4)0.3727 (6)0.94205 (13)0.0397 (9)
C10.5966 (6)0.8764 (8)0.65218 (17)0.0499 (11)
C20.6499 (5)1.0205 (12)0.60163 (17)0.0576 (13)
C30.5076 (6)1.1998 (8)0.57345 (18)0.0522 (12)
C40.3066 (5)1.2470 (7)0.59803 (15)0.0405 (11)
C50.2521 (6)1.1097 (7)0.64856 (17)0.0401 (11)
C60.3956 (5)0.9202 (6)0.67594 (16)0.0384 (11)
C70.3196 (6)0.7626 (8)0.72774 (16)0.0461 (12)
C80.4693 (6)0.5698 (7)0.76037 (16)0.0470 (14)
C90.4138 (6)0.4312 (7)0.80724 (17)0.0435 (13)
C100.5470 (5)0.2282 (7)0.84194 (15)0.0359 (10)
C110.4689 (5)0.1157 (7)0.89396 (16)0.0409 (10)
C120.5857 (5)0.0774 (6)0.92742 (17)0.0375 (11)
C130.7850 (5)0.1623 (6)0.90817 (15)0.0326 (10)
C140.8681 (5)0.0549 (7)0.85751 (16)0.0421 (13)
C150.7494 (6)0.1405 (7)0.82458 (16)0.0434 (11)
H1A0.695300.750900.670100.0600*
H2A0.786800.993400.586700.0690*
H3A0.542701.289400.538500.0630*
H5A0.118201.143700.664500.0480*
H8A0.609400.544700.747300.0560*
H9A0.274400.465500.819900.0530*
H11A0.334300.173100.906300.0490*
H12A0.532300.149600.962200.0450*
H14A1.003000.113300.845500.0510*
H15A0.805500.214500.790400.0520*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0622 (2)0.0424 (2)0.0541 (2)0.0079 (2)0.0041 (2)0.0068 (2)
O10.0605 (17)0.120 (3)0.066 (2)0.0404 (18)0.0305 (15)0.0444 (19)
O20.0533 (12)0.0489 (16)0.0559 (14)0.0060 (14)0.0111 (10)0.0179 (16)
O30.0488 (13)0.052 (2)0.0643 (17)0.0202 (11)0.0158 (12)0.0045 (12)
N10.0420 (16)0.0328 (15)0.0434 (18)0.0072 (11)0.0004 (13)0.0078 (12)
C10.0431 (18)0.054 (2)0.052 (2)0.0101 (16)0.0022 (17)0.0085 (17)
C20.0443 (17)0.065 (3)0.066 (2)0.006 (2)0.0182 (15)0.016 (3)
C30.051 (2)0.054 (2)0.053 (2)0.0019 (19)0.0127 (17)0.0123 (19)
C40.0490 (19)0.0328 (18)0.0381 (19)0.0016 (14)0.0038 (15)0.0002 (14)
C50.0385 (17)0.0447 (19)0.037 (2)0.0058 (14)0.0032 (15)0.0062 (14)
C60.0427 (18)0.040 (2)0.0321 (18)0.0037 (13)0.0024 (14)0.0023 (12)
C70.049 (2)0.052 (2)0.037 (2)0.0157 (17)0.0036 (16)0.0008 (16)
C80.0482 (19)0.053 (3)0.041 (2)0.0103 (16)0.0100 (16)0.0053 (15)
C90.0398 (16)0.049 (3)0.042 (2)0.0085 (14)0.0052 (15)0.0002 (14)
C100.0390 (16)0.0366 (18)0.0328 (18)0.0010 (14)0.0065 (13)0.0016 (13)
C110.0342 (16)0.0449 (18)0.045 (2)0.0069 (14)0.0108 (15)0.0003 (15)
C120.0398 (16)0.034 (2)0.0403 (19)0.0021 (12)0.0120 (14)0.0030 (12)
C130.0336 (15)0.0270 (17)0.0370 (18)0.0019 (12)0.0027 (13)0.0000 (13)
C140.0339 (15)0.050 (3)0.044 (2)0.0070 (14)0.0117 (14)0.0025 (15)
C150.0463 (19)0.047 (2)0.039 (2)0.0014 (15)0.0140 (16)0.0061 (16)
Geometric parameters (Å, º) top
Br1—C41.893 (3)C10—C151.391 (5)
O1—C71.222 (4)C11—C121.372 (5)
O2—N11.226 (4)C12—C131.385 (4)
O3—N11.221 (4)C13—C141.373 (5)
N1—C131.458 (4)C14—C151.380 (5)
C1—C21.388 (6)C1—H1A0.9300
C1—C61.387 (5)C2—H2A0.9300
C2—C31.355 (6)C3—H3A0.9300
C3—C41.399 (5)C5—H5A0.9300
C4—C51.372 (5)C8—H8A0.9300
C5—C61.387 (5)C9—H9A0.9300
C6—C71.494 (5)C11—H11A0.9300
C7—C81.466 (5)C12—H12A0.9300
C8—C91.312 (5)C14—H14A0.9300
C9—C101.468 (5)C15—H15A0.9300
C10—C111.395 (5)
O2—N1—O3123.5 (3)N1—C13—C14119.2 (3)
O2—N1—C13118.8 (3)C12—C13—C14121.6 (3)
O3—N1—C13117.8 (3)C13—C14—C15119.3 (3)
C2—C1—C6119.8 (3)C10—C15—C14120.8 (3)
C1—C2—C3121.7 (3)C2—C1—H1A120.00
C2—C3—C4118.5 (3)C6—C1—H1A120.00
Br1—C4—C3118.4 (3)C1—C2—H2A119.00
Br1—C4—C5120.9 (2)C3—C2—H2A119.00
C3—C4—C5120.8 (3)C2—C3—H3A121.00
C4—C5—C6120.4 (3)C4—C3—H3A121.00
C1—C6—C5118.9 (3)C4—C5—H5A120.00
C1—C6—C7123.1 (3)C6—C5—H5A120.00
C5—C6—C7117.9 (3)C7—C8—H8A119.00
O1—C7—C6119.1 (3)C9—C8—H8A119.00
O1—C7—C8120.9 (4)C8—C9—H9A116.00
C6—C7—C8120.0 (3)C10—C9—H9A116.00
C7—C8—C9122.7 (3)C10—C11—H11A119.00
C8—C9—C10127.3 (3)C12—C11—H11A119.00
C9—C10—C11119.5 (3)C11—C12—H12A121.00
C9—C10—C15122.4 (3)C13—C12—H12A121.00
C11—C10—C15118.2 (3)C13—C14—H14A120.00
C10—C11—C12121.7 (3)C15—C14—H14A120.00
C11—C12—C13118.5 (3)C10—C15—H15A120.00
N1—C13—C12119.3 (3)C14—C15—H15A120.00
O2—N1—C13—C122.9 (5)C5—C6—C7—C8176.8 (3)
O2—N1—C13—C14176.4 (3)O1—C7—C8—C93.9 (6)
O3—N1—C13—C12177.0 (3)C6—C7—C8—C9178.1 (3)
O3—N1—C13—C143.7 (4)C7—C8—C9—C10178.0 (3)
C6—C1—C2—C31.8 (7)C8—C9—C10—C11174.7 (4)
C2—C1—C6—C50.4 (6)C8—C9—C10—C155.9 (6)
C2—C1—C6—C7176.2 (4)C9—C10—C11—C12179.1 (3)
C1—C2—C3—C42.8 (7)C15—C10—C11—C120.4 (5)
C2—C3—C4—Br1179.5 (3)C9—C10—C15—C14178.6 (3)
C2—C3—C4—C51.7 (6)C11—C10—C15—C140.8 (5)
Br1—C4—C5—C6178.4 (3)C10—C11—C12—C130.6 (5)
C3—C4—C5—C60.4 (5)C11—C12—C13—N1178.2 (3)
C4—C5—C6—C11.4 (5)C11—C12—C13—C141.1 (5)
C4—C5—C6—C7175.4 (3)N1—C13—C14—C15178.7 (3)
C1—C6—C7—O1171.4 (4)C12—C13—C14—C150.6 (5)
C1—C6—C7—C86.6 (5)C13—C14—C15—C100.3 (5)
C5—C6—C7—O15.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O3i0.932.543.354 (4)147
C14—H14A···O1ii0.932.523.221 (4)132
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1, z.
 

Acknowledgements

The authors extend their appreciation to the Vidya Vikas Research & Development Center for facilities and encouragement. CKQ thanks the Malaysian Government and USM for a Research University Individual (RUI) Grant (1001/PFIZIK/811278).

References

First citationChidan Kumar, C. S., Balachandran, V., Fun, H. K., Chandraju, S. & Quah, C. K. (2015). J. Mol. Struct. 1100, 299–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationChidan Kumar, C. S., Shetty, T. C. S., Chia, T. S., Chandraju, S., Dharmaprakash, S. M., Fun, H. K. & Quah, K. (2016). Mater. Res. Innovations, pp. 1–8.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013). Molecules, 18, 11996–12011.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.  Google Scholar
First citationRigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku. (2011). CrystalClear SM-Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. 324, 33–39.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds