organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-{2-[2-(5-Methyl-1H-pyrazol-3-yl)acetamido]­phen­yl}benzamide monohydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and cLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco
*Correspondence e-mail: chkiratekarim@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 12 February 2017; accepted 13 February 2017; online 24 February 2017)

The asymmetric unit of the title compound, C19H18N4O2·H2O, comprises the U-shaped pyrazole derivative and a solvent water mol­ecule. The mol­ecular conformation is partly determined by an intra­molecular N—H⋯O hydrogen bond. The crystal packing is directed by an extensive network of O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds together with C—H⋯π(ring) contacts that generate a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazole derivatives have pharmacologically attractive biological applications (Havrylyuk et al., 2016[Havrylyuk, D., Roman, O. & Lesyk, R. (2016). Eur. J. Med. Chem. 113, 145-166.]) and inter­esting therapeutic properties (Khan et al., 2016[Khan, M. F., Alam, M. M., Verma, G., Akhtar, W., Akhter, M. & Shaquiquzzaman, M. (2016). Eur. J. Med. Chem. 120, 170-201.]). These compounds have been synthesized as target structures by many researchers and have been evaluated for their beneficial bioactivity and for the rational design of a new generation of small mol­ecule drugs (Küçükgüzel & Şenkardeş, 2015[Küçükgüzel, Ş. G. & Şenkardeş, S. (2015). Eur. J. Med. Chem. 1, 102-110.]). Continuing our research in this field (Chkirate et al., 2001[Chkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 635-636.]), we have synthesized N-2-benzamido-phenyl-5-methyl-pyrazol-3-yl acetamide by reacting benzoyl chloride with N-2-amino­phenyl-5-methyl-pyrazol-3-yl acetamide. The latter was obtained by the action of hydrazine on the 4-(oxo­propyl­idene)-1,5-benzodiazepin-2-one (El Abbassi et al., 1989[El Abbassi, M., Djerrari, B., Essassi, E. M. & Fifani, J. (1989). Tetrahedron Lett. 30, 7069-7070.]).

The title mol­ecule adopts a U-shaped conformation due, in part, to the intra­molecular N1—H1⋯O2 hydrogen bond (Table 1[link] and Fig. 1[link]). The dihedral angle between the C1–C6 and C8–C13 benzene rings is 49.67 (5)° while that between the latter ring and the pyrazole ring is 64.49 (6)°. The packing is governed largely by a network of inter­molecular hydrogen bonds including N2—H2A⋯N3i, N4—H4A⋯O3ii, O3—H3A⋯O1, O3—H3B⋯O2iv and C12—H12⋯O3iii (Table 1[link] and Fig. 2[link]). In addition there are two C—H⋯π(ring) inter­actions: C15—H15Aπ(C8–C13)v and C19—H19Aπ(N3,N4,C16–C18)vi, Table 1[link], that also contribute to the crystal packing. These contacts combine to generate a three-dimensional network, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the N3,N4,C16–C18 and C8–C13 rings respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.88 (2) 2.09 (2) 2.7902 (17) 135.0 (19)
N2—H2A⋯N3i 0.95 (2) 1.98 (2) 2.9209 (17) 176.4 (17)
N4—H4A⋯O3ii 0.92 (2) 1.88 (2) 2.7883 (16) 166.9 (19)
C12—H12⋯O3iii 0.978 (19) 2.464 (19) 3.4042 (19) 161.2 (14)
O3—H3A⋯O1 0.87 (3) 1.89 (3) 2.7445 (16) 167 (2)
O3—H3B⋯O2iv 0.94 (3) 1.83 (3) 2.7575 (15) 169 (2)
C15—H15ACg3v 0.957 (19) 2.893 (18) 3.8485 (15) 174.0 (14)
C19—H19ACg1vi 0.98 (3) 2.86 (3) 3.645 (2) 138 (2)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) x, y, z+1; (iv) -x+2, -y+1, -z+1; (v) -x+2, -y+1, -z+2; (vi) -x+1, -y+2, -z+2.
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-labelling scheme and 50% probability displacement ellipsoids. The intra­molecular N—H⋯O hydrogen bond is shown as a blue dashed line.
[Figure 2]
Figure 2
Crystal packing projected onto (111) with hydrogen bonds shown as dashed lines [O—H⋯O (red); N—H⋯O (blue); N—H⋯N (green); C—H⋯O (black)].

Synthesis and crystallization

To a solution of 5 × 10−4 mol of N-(2-amino­phenyl-5-methyl-pyrazol-3-yl)acetamide dissolved in 10 ml of ethanol was added 5 × 10−4 mol of benzoyl chloride. The mixture was stirred for 24 h at room temperature. After filtration and recrystallization from ethanol, colourless single crystals were obtained with a yield of 66%.

Refinement

Crystal and refinement details appear in Table 2[link]. Eleven reflections appearing near the top of the frames on which they were recorded were omitted from the fineal refinement as they appeared to have been partially obscured by the nozzle of the low-temperature attachment.

Table 2
Experimental details

Crystal data
Chemical formula C19H18N4O2·H2O
Mr 352.39
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.4220 (3), 10.0410 (4), 10.8799 (4)
α, β, γ (°) 101.889 (2), 94.104 (2), 90.402 (1)
V3) 897.79 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.74
Crystal size (mm) 0.15 × 0.14 × 0.10
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.85, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 6831, 3279, 2846
Rint 0.028
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.114, 1.06
No. of reflections 3279
No. of parameters 316
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.20, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N-{2-[2-(5-Methyl-1H-pyrazol-3-yl)acetamido]phenyl}benzamide monohydrate top
Crystal data top
C19H18N4O2·H2OZ = 2
Mr = 352.39F(000) = 372
Triclinic, P1Dx = 1.304 Mg m3
a = 8.4220 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.0410 (4) ÅCell parameters from 5496 reflections
c = 10.8799 (4) Åθ = 4.5–71.9°
α = 101.889 (2)°µ = 0.74 mm1
β = 94.104 (2)°T = 150 K
γ = 90.402 (1)°Block, colourless
V = 897.79 (6) Å30.15 × 0.14 × 0.10 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3279 independent reflections
Radiation source: INCOATEC IµS micro-focus source2846 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 4.2°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1112
Tmin = 0.85, Tmax = 0.93l = 1213
6831 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038All H-atom parameters refined
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.2007P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3279 reflectionsΔρmax = 0.20 e Å3
316 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0164 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.79721 (16)0.27601 (13)0.44040 (10)0.0459 (3)
O20.93031 (11)0.56110 (10)0.87382 (10)0.0299 (3)
N10.83593 (16)0.38781 (15)0.64465 (12)0.0344 (3)
H10.828 (3)0.468 (2)0.695 (2)0.053 (6)*
N20.77023 (13)0.38862 (11)0.89936 (10)0.0226 (3)
H2A0.693 (2)0.3631 (18)0.9497 (18)0.037 (5)*
N30.47391 (14)0.69851 (11)0.95462 (11)0.0266 (3)
N40.42223 (14)0.79751 (12)0.89372 (11)0.0275 (3)
H4A0.315 (3)0.798 (2)0.870 (2)0.050 (6)*
C10.73450 (18)0.51188 (18)0.48918 (14)0.0354 (4)
C20.7643 (2)0.63951 (19)0.56712 (16)0.0421 (4)
H20.830 (2)0.651 (2)0.648 (2)0.050 (5)*
C30.7021 (2)0.7553 (2)0.53373 (19)0.0514 (5)
H30.725 (3)0.844 (3)0.588 (2)0.067 (7)*
C40.6082 (2)0.7447 (2)0.42178 (19)0.0541 (5)
H40.569 (3)0.827 (2)0.402 (2)0.062 (6)*
C50.5786 (2)0.6188 (2)0.34362 (17)0.0499 (5)
H50.509 (3)0.608 (2)0.264 (2)0.055 (6)*
C60.6409 (2)0.5025 (2)0.37623 (15)0.0433 (4)
H60.619 (3)0.408 (2)0.321 (2)0.055 (6)*
C70.79287 (18)0.38224 (17)0.52099 (14)0.0352 (4)
C80.88775 (17)0.27928 (15)0.70092 (13)0.0308 (3)
C90.9735 (2)0.17147 (18)0.63698 (16)0.0416 (4)
H90.996 (3)0.177 (2)0.552 (2)0.057 (6)*
C101.0224 (2)0.06677 (18)0.69444 (16)0.0411 (4)
H101.082 (2)0.006 (2)0.646 (2)0.051 (6)*
C110.98655 (19)0.06710 (15)0.81653 (15)0.0348 (3)
H111.020 (2)0.006 (2)0.858 (2)0.050 (6)*
C120.90333 (17)0.17445 (14)0.88159 (14)0.0280 (3)
H120.880 (2)0.1783 (17)0.9689 (18)0.033 (4)*
C130.85463 (15)0.28126 (13)0.82543 (13)0.0247 (3)
C140.82037 (15)0.51951 (13)0.92651 (12)0.0230 (3)
C150.73064 (17)0.61472 (13)1.02316 (13)0.0254 (3)
H15A0.810 (2)0.6650 (18)1.0828 (18)0.035 (4)*
H15B0.664 (2)0.5616 (18)1.0653 (17)0.032 (4)*
C160.63237 (16)0.71090 (13)0.96200 (13)0.0251 (3)
C170.68045 (17)0.81614 (14)0.90528 (15)0.0305 (3)
H170.793 (2)0.8410 (19)0.8959 (18)0.039 (5)*
C180.54213 (17)0.86907 (14)0.86181 (14)0.0279 (3)
C190.5098 (2)0.98073 (17)0.79240 (18)0.0390 (4)
H19A0.445 (3)1.052 (3)0.838 (3)0.079 (8)*
H19B0.609 (3)1.019 (2)0.772 (2)0.064 (7)*
H19C0.445 (3)0.947 (2)0.714 (2)0.052 (6)*
O30.89511 (12)0.24005 (10)0.20075 (10)0.0295 (3)
H3A0.872 (3)0.263 (3)0.278 (3)0.074 (8)*
H3B0.946 (3)0.315 (3)0.181 (2)0.061 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0582 (7)0.0541 (7)0.0246 (6)0.0020 (6)0.0032 (5)0.0061 (5)
O20.0293 (5)0.0313 (5)0.0310 (5)0.0026 (4)0.0063 (4)0.0097 (4)
N10.0403 (7)0.0429 (7)0.0214 (6)0.0066 (6)0.0041 (5)0.0091 (5)
N20.0248 (5)0.0240 (5)0.0202 (5)0.0007 (4)0.0042 (4)0.0061 (4)
N30.0275 (6)0.0259 (6)0.0275 (6)0.0019 (4)0.0033 (5)0.0074 (4)
N40.0265 (6)0.0270 (6)0.0303 (6)0.0021 (5)0.0022 (5)0.0090 (5)
C10.0303 (7)0.0556 (10)0.0240 (7)0.0008 (7)0.0050 (6)0.0156 (6)
C20.0413 (9)0.0539 (10)0.0349 (9)0.0047 (7)0.0044 (7)0.0203 (7)
C30.0563 (11)0.0548 (11)0.0477 (11)0.0014 (9)0.0004 (9)0.0228 (9)
C40.0508 (11)0.0746 (14)0.0483 (11)0.0143 (10)0.0088 (9)0.0368 (10)
C50.0385 (9)0.0839 (14)0.0327 (9)0.0126 (9)0.0027 (7)0.0245 (9)
C60.0357 (8)0.0713 (12)0.0251 (8)0.0046 (8)0.0028 (6)0.0151 (7)
C70.0323 (7)0.0530 (9)0.0217 (7)0.0005 (7)0.0055 (6)0.0099 (6)
C80.0311 (7)0.0371 (8)0.0245 (7)0.0046 (6)0.0032 (6)0.0069 (6)
C90.0448 (9)0.0514 (10)0.0279 (8)0.0117 (8)0.0096 (7)0.0041 (7)
C100.0412 (8)0.0415 (9)0.0370 (9)0.0115 (7)0.0082 (7)0.0023 (7)
C110.0359 (8)0.0288 (7)0.0389 (8)0.0034 (6)0.0042 (7)0.0047 (6)
C120.0297 (7)0.0266 (7)0.0279 (7)0.0002 (5)0.0041 (6)0.0055 (5)
C130.0237 (6)0.0267 (6)0.0226 (7)0.0000 (5)0.0023 (5)0.0026 (5)
C140.0241 (6)0.0264 (6)0.0200 (6)0.0016 (5)0.0007 (5)0.0089 (5)
C150.0297 (7)0.0237 (6)0.0234 (7)0.0021 (5)0.0023 (6)0.0063 (5)
C160.0276 (6)0.0218 (6)0.0253 (7)0.0007 (5)0.0016 (5)0.0036 (5)
C170.0275 (7)0.0279 (7)0.0386 (8)0.0009 (6)0.0015 (6)0.0128 (6)
C180.0307 (7)0.0240 (6)0.0297 (7)0.0011 (5)0.0024 (6)0.0071 (5)
C190.0421 (9)0.0328 (8)0.0464 (10)0.0036 (7)0.0005 (8)0.0191 (7)
O30.0316 (5)0.0291 (5)0.0289 (6)0.0006 (4)0.0034 (4)0.0082 (4)
Geometric parameters (Å, º) top
O1—C71.236 (2)C8—C91.397 (2)
O2—C141.2368 (16)C8—C131.399 (2)
N1—C71.3578 (19)C9—C101.380 (3)
N1—C81.413 (2)C9—H90.97 (2)
N1—H10.88 (2)C10—C111.382 (2)
N2—C141.3444 (17)C10—H100.97 (2)
N2—C131.4316 (17)C11—C121.386 (2)
N2—H2A0.95 (2)C11—H110.98 (2)
N3—C161.3346 (18)C12—C131.390 (2)
N3—N41.3611 (16)C12—H120.978 (19)
N4—C181.3414 (19)C14—C151.5167 (18)
N4—H4A0.92 (2)C15—C161.5026 (19)
C1—C21.393 (3)C15—H15A0.957 (19)
C1—C61.398 (2)C15—H15B0.972 (19)
C1—C71.492 (2)C16—C171.400 (2)
C2—C31.383 (3)C17—C181.377 (2)
C2—H20.99 (2)C17—H170.997 (19)
C3—C41.388 (3)C18—C191.492 (2)
C3—H30.97 (3)C19—H19A0.98 (3)
C4—C51.380 (3)C19—H19B0.97 (3)
C4—H40.96 (2)C19—H19C0.98 (2)
C5—C61.385 (3)O3—H3A0.87 (3)
C5—H51.00 (2)O3—H3B0.94 (3)
C6—H61.02 (2)
C7—N1—C8127.23 (14)C9—C10—C11120.29 (14)
C7—N1—H1115.9 (14)C9—C10—H10117.5 (13)
C8—N1—H1116.9 (14)C11—C10—H10122.2 (13)
C14—N2—C13123.60 (11)C10—C11—C12119.52 (15)
C14—N2—H2A117.1 (11)C10—C11—H11121.3 (12)
C13—N2—H2A117.0 (11)C12—C11—H11119.2 (12)
C16—N3—N4104.44 (11)C11—C12—C13120.87 (14)
C18—N4—N3112.75 (11)C11—C12—H12121.0 (10)
C18—N4—H4A129.2 (13)C13—C12—H12118.1 (10)
N3—N4—H4A117.3 (13)C12—C13—C8119.56 (13)
C2—C1—C6118.94 (16)C12—C13—N2117.38 (12)
C2—C1—C7123.71 (14)C8—C13—N2123.06 (13)
C6—C1—C7117.33 (16)O2—C14—N2122.29 (12)
C3—C2—C1120.71 (16)O2—C14—C15121.70 (12)
C3—C2—H2117.6 (12)N2—C14—C15115.99 (12)
C1—C2—H2121.7 (12)C16—C15—C14110.76 (11)
C2—C3—C4119.9 (2)C16—C15—H15A109.7 (11)
C2—C3—H3120.2 (15)C14—C15—H15A106.3 (11)
C4—C3—H3119.9 (15)C16—C15—H15B110.7 (10)
C5—C4—C3119.85 (19)C14—C15—H15B109.5 (10)
C5—C4—H4123.0 (15)H15A—C15—H15B109.7 (15)
C3—C4—H4117.1 (15)N3—C16—C17110.92 (12)
C4—C5—C6120.57 (16)N3—C16—C15119.15 (12)
C4—C5—H5121.4 (12)C17—C16—C15129.92 (13)
C6—C5—H5118.0 (13)C18—C17—C16105.70 (13)
C5—C6—C1120.03 (18)C18—C17—H17129.2 (11)
C5—C6—H6121.8 (12)C16—C17—H17125.0 (11)
C1—C6—H6118.1 (13)N4—C18—C17106.19 (12)
O1—C7—N1122.37 (16)N4—C18—C19120.86 (13)
O1—C7—C1122.02 (14)C17—C18—C19132.95 (14)
N1—C7—C1115.58 (14)C18—C19—H19A112.3 (16)
C9—C8—C13118.99 (14)C18—C19—H19B110.6 (14)
C9—C8—N1122.09 (14)H19A—C19—H19B111 (2)
C13—C8—N1118.91 (13)C18—C19—H19C110.7 (12)
C10—C9—C8120.75 (15)H19A—C19—H19C104 (2)
C10—C9—H9123.7 (13)H19B—C19—H19C108.2 (19)
C8—C9—H9115.5 (13)H3A—O3—H3B107 (2)
C16—N3—N4—C180.84 (15)C11—C12—C13—C81.1 (2)
C6—C1—C2—C30.1 (3)C11—C12—C13—N2179.58 (13)
C7—C1—C2—C3177.84 (16)C9—C8—C13—C121.9 (2)
C1—C2—C3—C40.3 (3)N1—C8—C13—C12179.30 (13)
C2—C3—C4—C50.6 (3)C9—C8—C13—N2178.78 (14)
C3—C4—C5—C60.4 (3)N1—C8—C13—N20.0 (2)
C4—C5—C6—C10.1 (3)C14—N2—C13—C12120.82 (14)
C2—C1—C6—C50.4 (2)C14—N2—C13—C859.84 (18)
C7—C1—C6—C5177.75 (15)C13—N2—C14—O211.49 (19)
C8—N1—C7—O11.2 (3)C13—N2—C14—C15170.30 (11)
C8—N1—C7—C1176.82 (14)O2—C14—C15—C1668.48 (16)
C2—C1—C7—O1163.00 (17)N2—C14—C15—C16109.73 (13)
C6—C1—C7—O119.0 (2)N4—N3—C16—C170.49 (15)
C2—C1—C7—N119.0 (2)N4—N3—C16—C15179.14 (11)
C6—C1—C7—N1159.01 (14)C14—C15—C16—N3111.39 (14)
C7—N1—C8—C932.0 (2)C14—C15—C16—C1766.96 (18)
C7—N1—C8—C13149.26 (15)N3—C16—C17—C180.00 (16)
C13—C8—C9—C101.3 (3)C15—C16—C17—C18178.46 (13)
N1—C8—C9—C10179.91 (15)N3—N4—C18—C170.86 (16)
C8—C9—C10—C110.1 (3)N3—N4—C18—C19178.99 (13)
C9—C10—C11—C121.0 (3)C16—C17—C18—N40.50 (16)
C10—C11—C12—C130.4 (2)C16—C17—C18—C19179.31 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the N3,N4,C16–C18 and C8–C13 rings respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.88 (2)2.09 (2)2.7902 (17)135.0 (19)
N2—H2A···N3i0.95 (2)1.98 (2)2.9209 (17)176.4 (17)
N4—H4A···O3ii0.92 (2)1.88 (2)2.7883 (16)166.9 (19)
C12—H12···O3iii0.978 (19)2.464 (19)3.4042 (19)161.2 (14)
O3—H3A···O10.87 (3)1.89 (3)2.7445 (16)167 (2)
O3—H3B···O2iv0.94 (3)1.83 (3)2.7575 (15)169 (2)
C15—H15A···Cg3v0.957 (19)2.893 (18)3.8485 (15)174.0 (14)
C19—H19A···Cg1vi0.98 (3)2.86 (3)3.645 (2)138 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+2, y+1, z+1; (v) x+2, y+1, z+2; (vi) x+1, y+2, z+2.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 635–636.  CAS Google Scholar
First citationEl Abbassi, M., Djerrari, B., Essassi, E. M. & Fifani, J. (1989). Tetrahedron Lett. 30, 7069–7070.  CrossRef CAS Google Scholar
First citationHavrylyuk, D., Roman, O. & Lesyk, R. (2016). Eur. J. Med. Chem. 113, 145–166.  CrossRef CAS PubMed Google Scholar
First citationKhan, M. F., Alam, M. M., Verma, G., Akhtar, W., Akhter, M. & Shaquiquzzaman, M. (2016). Eur. J. Med. Chem. 120, 170–201.  CrossRef CAS PubMed Google Scholar
First citationKüçükgüzel, Ş. G. & Şenkardeş, S. (2015). Eur. J. Med. Chem. 1, 102–110.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds