organic compounds
(2E,2′E)-3,3′-(1,4-Phenylene)bis[1-(4-fluorophenyl)prop-2-en-1-one]
aDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering and Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570 028, India, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang 11800 USM, Malaysia, cDepartment of Chemistry, Sir M.V. PG Center, University of Mysore, Tubinakere, Mandya 571 402, India, dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, eInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, and fDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: naveen@ioe.uni-mysore.ac.in, muneer@najah.edu
The title bis-chalcone compound, C24H16F2O2, crystallizes with one half-molecule in the The molecule lies about an inversion centre at the centroid of the central benzene ring. The olefinic double bonds adopt E conformations. In the crystal, C—H⋯O hydrogen bonds form sheets of molecules in the ac plane and C—H⋯F hydrogen bonds form zigzag chains along the a-axis direction. These combine to generate a three-dimensional network of molecules stacked along the c-axis direction.
Keywords: crystal structure; bis-chalcone; inversion symmetry.
CCDC reference: 1449627
Structure description
Numerous studies have shown that bis-chalcones possess multiple pharmacological properties (Nowakowska, 2007). Materials with large non-linear optical (NLO) susceptibilities are of current interest in the area of harmonic generation and optical modulation. There is also considerable interest in the synthesis of new NLO materials because of their potential applications in technologies such as optical computing and optical communication (Chidan et al., 2015) and because such materials play an important role in fields such as photonics and optoelectronics (Kumar et al. 2013). As a part of our ongoing work on such molecules (Naveen et al., 2017; Rajendraprasad et al., 2017), we report here the of the title bis-chalcone derivative.
The title compound crystallizes with one half-molecule in the . The molecule lies about an inversion centre at the centroid of the central C10–C12/C10i–C12i, benzene ring [symmetry code: (i) −x + 1, −y + 2, −z + 2]. The olefinic double bond adopts an E conformation. The trans conformation of the C=C double bond in the central enone group is confirmed by the C10—C9—C8=C7 torsion angle of −178.3 (2)°. This value is larger than that reported previously for the related compound (2E,2′E)-1,1′-(1,4-phenylene)bis(3-(3-chlorophenyl)prop-2-en-1-one) (Rajendraprasad et al., 2017).
and its structure is shown in Fig. 1In the crystal, C5—H5A⋯O1 and C8—H8A⋯O1 hydrogen bonds link molecules into sheets in the ac plane, Fig. 2, while C2—H2A⋯F1 hydrogen bonds form zigzag chains along the a-axis direction (Table 1). These contacts combine to generate a three-dimensional network with molecules stacked along the c-axis direction, Fig. 3.
Synthesis and crystallization
Terephthalaldehyde (1.06 g, 0.01 mol) was mixed with 4-fluoroacetophenone (2.76 g, 0.01 mol) and dissolved in methanol (30 ml). To this, 3 ml of NaOH (50%) was added. The reaction mixture was stirred for 6 h. The resulting crude solid was filtered, washed successively with distilled water and finally recrystallized from methanol (90%) to give the pure bis-chalcone. Single crystals suitable for X-ray diffraction studies were grown by the slow evaporation of an acetone-methanol (1:1) solution (m.p. 402–405 K).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1449627
https://doi.org/10.1107/S2414314617002383/sj4089sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617002383/sj4089Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617002383/sj4089Isup3.cml
Data collection: CrystalClear SM-Expert (Rigaku, 2011); cell
CrystalClear SM-Expert (Rigaku, 2011); data reduction: CrystalClear SM-Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).C24H16F2O2 | F(000) = 388 |
Mr = 374.37 | Dx = 1.422 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1379 reflections |
a = 20.405 (6) Å | θ = 2.0–27.4° |
b = 3.8237 (11) Å | µ = 0.10 mm−1 |
c = 11.233 (3) Å | T = 100 K |
β = 93.989 (5)° | Rectangle, white |
V = 874.3 (4) Å3 | 0.22 × 0.15 × 0.13 mm |
Z = 2 |
Rigaku Saturn724+ diffractometer | 1963 independent reflections |
Radiation source: fine-focus sealed tube | 1379 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Detector resolution: 18.4 pixels mm-1 | θmax = 27.4°, θmin = 2.0° |
profile data from ω–scans | h = −25→26 |
Absorption correction: multi-scan (NUMABS; Rigaku, 1999) | k = −4→4 |
Tmin = 0.977, Tmax = 0.987 | l = −14→14 |
6328 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.069 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.203 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.1169P)2 + 0.1724P] where P = (Fo2 + 2Fc2)/3 |
1963 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.02041 (7) | 0.3368 (4) | 0.88439 (14) | 0.0309 (5) | |
O1 | 0.29100 (8) | 0.6037 (5) | 0.66903 (15) | 0.0296 (6) | |
C1 | 0.16568 (12) | 0.4078 (6) | 0.7220 (2) | 0.0217 (7) | |
C2 | 0.10182 (12) | 0.3342 (6) | 0.7470 (2) | 0.0239 (8) | |
C3 | 0.08291 (11) | 0.4157 (6) | 0.8586 (2) | 0.0223 (7) | |
C4 | 0.12399 (11) | 0.5737 (6) | 0.9452 (2) | 0.0227 (8) | |
C5 | 0.18808 (11) | 0.6453 (6) | 0.9197 (2) | 0.0215 (7) | |
C6 | 0.20983 (11) | 0.5648 (6) | 0.8074 (2) | 0.0195 (7) | |
C7 | 0.27745 (12) | 0.6434 (6) | 0.7722 (2) | 0.0218 (7) | |
C8 | 0.32763 (12) | 0.7663 (6) | 0.8654 (2) | 0.0213 (7) | |
C9 | 0.39052 (11) | 0.7978 (6) | 0.8397 (2) | 0.0204 (7) | |
C10 | 0.44537 (11) | 0.9062 (6) | 0.9229 (2) | 0.0203 (7) | |
C11 | 0.43665 (12) | 1.0668 (6) | 1.0322 (2) | 0.0219 (7) | |
C12 | 0.50979 (12) | 0.8414 (6) | 0.8921 (2) | 0.0207 (7) | |
H1A | 0.18000 | 0.35110 | 0.64570 | 0.0260* | |
H2A | 0.07190 | 0.23040 | 0.68880 | 0.0290* | |
H4A | 0.10870 | 0.63200 | 1.02070 | 0.0270* | |
H5A | 0.21740 | 0.74970 | 0.97870 | 0.0260* | |
H8A | 0.31510 | 0.82230 | 0.94300 | 0.0260* | |
H9A | 0.40050 | 0.74510 | 0.76030 | 0.0250* | |
H11A | 0.39350 | 1.11350 | 1.05480 | 0.0260* | |
H12A | 0.51670 | 0.73270 | 0.81800 | 0.0250* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0202 (8) | 0.0400 (9) | 0.0327 (9) | −0.0027 (6) | 0.0033 (6) | 0.0003 (7) |
O1 | 0.0271 (10) | 0.0471 (12) | 0.0147 (9) | −0.0049 (8) | 0.0016 (7) | −0.0024 (8) |
C1 | 0.0273 (13) | 0.0205 (12) | 0.0170 (12) | 0.0007 (9) | −0.0015 (9) | 0.0007 (9) |
C2 | 0.0233 (13) | 0.0247 (13) | 0.0225 (13) | −0.0004 (10) | −0.0068 (9) | −0.0015 (10) |
C3 | 0.0203 (12) | 0.0194 (12) | 0.0271 (14) | 0.0010 (9) | 0.0004 (9) | 0.0044 (9) |
C4 | 0.0243 (13) | 0.0256 (14) | 0.0180 (12) | 0.0020 (10) | 0.0008 (9) | 0.0004 (9) |
C5 | 0.0249 (13) | 0.0230 (12) | 0.0161 (12) | 0.0004 (10) | −0.0013 (9) | 0.0012 (9) |
C6 | 0.0236 (12) | 0.0180 (12) | 0.0163 (12) | 0.0009 (9) | −0.0020 (9) | 0.0010 (8) |
C7 | 0.0264 (13) | 0.0226 (12) | 0.0159 (12) | 0.0002 (10) | −0.0019 (9) | 0.0006 (9) |
C8 | 0.0224 (12) | 0.0253 (13) | 0.0157 (12) | −0.0008 (9) | −0.0016 (9) | −0.0006 (9) |
C9 | 0.0226 (13) | 0.0241 (13) | 0.0144 (12) | −0.0013 (9) | −0.0001 (9) | 0.0003 (9) |
C10 | 0.0213 (12) | 0.0217 (12) | 0.0175 (12) | −0.0029 (9) | −0.0017 (9) | 0.0036 (9) |
C11 | 0.0226 (12) | 0.0238 (13) | 0.0191 (12) | −0.0008 (9) | 0.0007 (9) | 0.0025 (9) |
C12 | 0.0258 (13) | 0.0227 (12) | 0.0136 (12) | −0.0013 (9) | 0.0009 (9) | 0.0000 (9) |
F1—C3 | 1.361 (3) | C10—C11 | 1.395 (3) |
O1—C7 | 1.220 (3) | C10—C12 | 1.404 (3) |
C1—C2 | 1.381 (3) | C11—C12i | 1.383 (3) |
C1—C6 | 1.404 (3) | C1—H1A | 0.9500 |
C2—C3 | 1.373 (3) | C2—H2A | 0.9500 |
C3—C4 | 1.379 (3) | C4—H4A | 0.9500 |
C4—C5 | 1.385 (3) | C5—H5A | 0.9500 |
C5—C6 | 1.400 (3) | C8—H8A | 0.9500 |
C6—C7 | 1.492 (3) | C9—H9A | 0.9500 |
C7—C8 | 1.489 (3) | C11—H11A | 0.9500 |
C8—C9 | 1.340 (3) | C12—H12A | 0.9500 |
C9—C10 | 1.467 (3) | ||
C2—C1—C6 | 121.2 (2) | C10—C11—C12i | 120.6 (2) |
C1—C2—C3 | 117.9 (2) | C10—C12—C11i | 121.1 (2) |
F1—C3—C2 | 118.1 (2) | C2—C1—H1A | 119.00 |
F1—C3—C4 | 118.7 (2) | C6—C1—H1A | 119.00 |
C2—C3—C4 | 123.2 (2) | C1—C2—H2A | 121.00 |
C3—C4—C5 | 118.5 (2) | C3—C2—H2A | 121.00 |
C4—C5—C6 | 120.4 (2) | C3—C4—H4A | 121.00 |
C1—C6—C5 | 118.7 (2) | C5—C4—H4A | 121.00 |
C1—C6—C7 | 117.8 (2) | C4—C5—H5A | 120.00 |
C5—C6—C7 | 123.5 (2) | C6—C5—H5A | 120.00 |
O1—C7—C6 | 120.1 (2) | C7—C8—H8A | 120.00 |
O1—C7—C8 | 121.2 (2) | C9—C8—H8A | 120.00 |
C6—C7—C8 | 118.7 (2) | C8—C9—H9A | 117.00 |
C7—C8—C9 | 119.9 (2) | C10—C9—H9A | 117.00 |
C8—C9—C10 | 126.0 (2) | C10—C11—H11A | 120.00 |
C9—C10—C11 | 123.1 (2) | C12i—C11—H11A | 120.00 |
C9—C10—C12 | 118.6 (2) | C10—C12—H12A | 119.00 |
C11—C10—C12 | 118.3 (2) | C11i—C12—H12A | 119.00 |
C6—C1—C2—C3 | −0.7 (3) | C5—C6—C7—O1 | −171.6 (2) |
C2—C1—C6—C5 | 0.3 (3) | C5—C6—C7—C8 | 9.1 (3) |
C2—C1—C6—C7 | −178.6 (2) | O1—C7—C8—C9 | −7.5 (4) |
C1—C2—C3—F1 | −178.6 (2) | C6—C7—C8—C9 | 171.9 (2) |
C1—C2—C3—C4 | 1.5 (4) | C7—C8—C9—C10 | −178.3 (2) |
F1—C3—C4—C5 | 178.3 (2) | C8—C9—C10—C11 | −15.2 (4) |
C2—C3—C4—C5 | −1.8 (4) | C8—C9—C10—C12 | 163.9 (2) |
C3—C4—C5—C6 | 1.3 (3) | C9—C10—C11—C12i | 179.0 (2) |
C4—C5—C6—C1 | −0.6 (3) | C12—C10—C11—C12i | −0.1 (3) |
C4—C5—C6—C7 | 178.2 (2) | C9—C10—C12—C11i | −179.1 (2) |
C1—C6—C7—O1 | 7.2 (3) | C11—C10—C12—C11i | 0.1 (3) |
C1—C6—C7—C8 | −172.1 (2) | C10—C11—C12i—C10i | 0.1 (3) |
Symmetry code: (i) −x+1, −y+2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···F1ii | 0.95 | 2.50 | 3.392 (3) | 155 |
C5—H5A···O1iii | 0.95 | 2.59 | 3.515 (3) | 166 |
C8—H8A···O1iii | 0.95 | 2.63 | 3.577 (3) | 171 |
Symmetry codes: (ii) −x, y−1/2, −z+3/2; (iii) x, −y+3/2, z+1/2. |
Acknowledgements
The authors extend their appreciation to Vidya Vikas Research & Development Center for the facilities and encouragement. CKQ thanks the Malaysian Government and USM for a Research University Individual (RUI) Grant (1001/PFIZIK/811278).
References
Chidan Kumar, C. S., Balachandran, V., Fun, H. K., Chandraju, S. & Quah, C. K. (2015). J. Mol. Struct. 1100, 299–310. Web of Science CSD CrossRef CAS Google Scholar
Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013). Molecules, 18, 11996–12011. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Naveen, S., Dileep Kumar, A., Lokeshwari, M., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2017). IUCrData, 2, x170126. Google Scholar
Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137. Web of Science CrossRef PubMed CAS Google Scholar
Rajendraprasad, S., Chidan Kumar, C. S., Chandraju, S., Lokanath, N. K., Quah, C. K., Naveen, S. & Abdoh, M. (2017). IUCrData, 2, x170212. Google Scholar
Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.