organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2E,2′E)-3,3′-(1,4-Phenyl­ene)bis­­[1-(4-fluoro­phen­yl)prop-2-en-1-one]

CROSSMARK_Color_square_no_text.svg

aDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering and Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570 028, India, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang 11800 USM, Malaysia, cDepartment of Chemistry, Sir M.V. PG Center, University of Mysore, Tubinakere, Mandya 571 402, India, dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, eInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, and fDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: naveen@ioe.uni-mysore.ac.in, muneer@najah.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 9 February 2017; accepted 12 February 2017; online 17 February 2017)

The title bis-chalcone compound, C24H16F2O2, crystallizes with one half-mol­ecule in the asymmetric unit. The mol­ecule lies about an inversion centre at the centroid of the central benzene ring. The olefinic double bonds adopt E conformations. In the crystal, C—H⋯O hydrogen bonds form sheets of mol­ecules in the ac plane and C—H⋯F hydrogen bonds form zigzag chains along the a-axis direction. These combine to generate a three-dimensional network of mol­ecules stacked along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Numerous studies have shown that bis-chalcones possess multiple pharmacological properties (Nowakowska, 2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]). Materials with large non-linear optical (NLO) susceptibilities are of current inter­est in the area of harmonic generation and optical modulation. There is also considerable inter­est in the synthesis of new NLO materials because of their potential applications in technologies such as optical computing and optical communication (Chidan et al., 2015[Chidan Kumar, C. S., Balachandran, V., Fun, H. K., Chandraju, S. & Quah, C. K. (2015). J. Mol. Struct. 1100, 299-310.]) and because such materials play an important role in fields such as photonics and optoelectronics (Kumar et al. 2013[Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013). Molecules, 18, 11996-12011.]). As a part of our ongoing work on such mol­ecules (Naveen et al., 2017[Naveen, S., Dileep Kumar, A., Lokeshwari, M., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2017). IUCrData, 2, x170126.]; Rajendraprasad et al., 2017[Rajendraprasad, S., Chidan Kumar, C. S., Chandraju, S., Lokanath, N. K., Quah, C. K., Naveen, S. & Abdoh, M. (2017). IUCrData, 2, x170212.]), we report here the crystal structure of the title bis-chalcone derivative.

The title compound crystallizes with one half-mol­ecule in the asymmetric unit and its structure is shown in Fig. 1[link]. The mol­ecule lies about an inversion centre at the centroid of the central C10–C12/C10i–C12i, benzene ring [symmetry code: (i) −x + 1, −y + 2, −z + 2]. The olefinic double bond adopts an E conformation. The trans conformation of the C=C double bond in the central enone group is confirmed by the C10—C9—C8=C7 torsion angle of −178.3 (2)°. This value is larger than that reported previously for the related compound (2E,2′E)-1,1′-(1,4-phenyl­ene)bis­(3-(3-chloro­phen­yl)prop-2-en-1-one) (Rajendraprasad et al., 2017[Rajendraprasad, S., Chidan Kumar, C. S., Chandraju, S., Lokanath, N. K., Quah, C. K., Naveen, S. & Abdoh, M. (2017). IUCrData, 2, x170212.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Labelled atoms are related to unlabelled atoms by the symmetry operation (−x + 1, −y + 2, −z + 2). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

In the crystal, C5—H5A⋯O1 and C8—H8A⋯O1 hydrogen bonds link mol­ecules into sheets in the ac plane, Fig. 2[link], while C2—H2A⋯F1 hydrogen bonds form zigzag chains along the a-axis direction (Table 1[link]). These contacts combine to generate a three-dimensional network with mol­ecules stacked along the c-axis direction, Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F1i 0.95 2.50 3.392 (3) 155
C5—H5A⋯O1ii 0.95 2.59 3.515 (3) 166
C8—H8A⋯O1ii 0.95 2.63 3.577 (3) 171
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A sheet of mol­ecules in the ac plane viewed along the b axis, with C—H⋯O hydrogen bonds drawn as dashed lines.
[Figure 3]
Figure 3
Packing of the mol­ecules viewed along the c axis, showing the zigzag arrangement of mol­ecules and layered stacking.

Synthesis and crystallization

Terephthalaldehyde (1.06 g, 0.01 mol) was mixed with 4-fluoro­aceto­phenone (2.76 g, 0.01 mol) and dissolved in methanol (30 ml). To this, 3 ml of NaOH (50%) was added. The reaction mixture was stirred for 6 h. The resulting crude solid was filtered, washed successively with distilled water and finally recrystallized from methanol (90%) to give the pure bis-chalcone. Single crystals suitable for X-ray diffraction studies were grown by the slow evaporation of an acetone-methanol (1:1) solution (m.p. 402–405 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H16F2O2
Mr 374.37
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 20.405 (6), 3.8237 (11), 11.233 (3)
β (°) 93.989 (5)
V3) 874.3 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.22 × 0.15 × 0.13
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.977, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 6328, 1963, 1379
Rint 0.039
(sin θ/λ)max−1) 0.647
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.203, 1.09
No. of reflections 1963
No. of parameters 127
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.37
Computer programs: CrystalClear SM-Expert (Rigaku, 2011[Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrystalClear SM-Expert (Rigaku, 2011); cell refinement: CrystalClear SM-Expert (Rigaku, 2011); data reduction: CrystalClear SM-Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(2E,2'E)-3,3'-(1,4-Phenylene)bis[1-(4-fluorophenyl)prop-2-en-1-one] top
Crystal data top
C24H16F2O2F(000) = 388
Mr = 374.37Dx = 1.422 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1379 reflections
a = 20.405 (6) Åθ = 2.0–27.4°
b = 3.8237 (11) ŵ = 0.10 mm1
c = 11.233 (3) ÅT = 100 K
β = 93.989 (5)°Rectangle, white
V = 874.3 (4) Å30.22 × 0.15 × 0.13 mm
Z = 2
Data collection top
Rigaku Saturn724+
diffractometer
1963 independent reflections
Radiation source: fine-focus sealed tube1379 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 18.4 pixels mm-1θmax = 27.4°, θmin = 2.0°
profile data from ω–scansh = 2526
Absorption correction: multi-scan
(NUMABS; Rigaku, 1999)
k = 44
Tmin = 0.977, Tmax = 0.987l = 1414
6328 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1169P)2 + 0.1724P]
where P = (Fo2 + 2Fc2)/3
1963 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.02041 (7)0.3368 (4)0.88439 (14)0.0309 (5)
O10.29100 (8)0.6037 (5)0.66903 (15)0.0296 (6)
C10.16568 (12)0.4078 (6)0.7220 (2)0.0217 (7)
C20.10182 (12)0.3342 (6)0.7470 (2)0.0239 (8)
C30.08291 (11)0.4157 (6)0.8586 (2)0.0223 (7)
C40.12399 (11)0.5737 (6)0.9452 (2)0.0227 (8)
C50.18808 (11)0.6453 (6)0.9197 (2)0.0215 (7)
C60.20983 (11)0.5648 (6)0.8074 (2)0.0195 (7)
C70.27745 (12)0.6434 (6)0.7722 (2)0.0218 (7)
C80.32763 (12)0.7663 (6)0.8654 (2)0.0213 (7)
C90.39052 (11)0.7978 (6)0.8397 (2)0.0204 (7)
C100.44537 (11)0.9062 (6)0.9229 (2)0.0203 (7)
C110.43665 (12)1.0668 (6)1.0322 (2)0.0219 (7)
C120.50979 (12)0.8414 (6)0.8921 (2)0.0207 (7)
H1A0.180000.351100.645700.0260*
H2A0.071900.230400.688800.0290*
H4A0.108700.632001.020700.0270*
H5A0.217400.749700.978700.0260*
H8A0.315100.822300.943000.0260*
H9A0.400500.745100.760300.0250*
H11A0.393501.113501.054800.0260*
H12A0.516700.732700.818000.0250*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0202 (8)0.0400 (9)0.0327 (9)0.0027 (6)0.0033 (6)0.0003 (7)
O10.0271 (10)0.0471 (12)0.0147 (9)0.0049 (8)0.0016 (7)0.0024 (8)
C10.0273 (13)0.0205 (12)0.0170 (12)0.0007 (9)0.0015 (9)0.0007 (9)
C20.0233 (13)0.0247 (13)0.0225 (13)0.0004 (10)0.0068 (9)0.0015 (10)
C30.0203 (12)0.0194 (12)0.0271 (14)0.0010 (9)0.0004 (9)0.0044 (9)
C40.0243 (13)0.0256 (14)0.0180 (12)0.0020 (10)0.0008 (9)0.0004 (9)
C50.0249 (13)0.0230 (12)0.0161 (12)0.0004 (10)0.0013 (9)0.0012 (9)
C60.0236 (12)0.0180 (12)0.0163 (12)0.0009 (9)0.0020 (9)0.0010 (8)
C70.0264 (13)0.0226 (12)0.0159 (12)0.0002 (10)0.0019 (9)0.0006 (9)
C80.0224 (12)0.0253 (13)0.0157 (12)0.0008 (9)0.0016 (9)0.0006 (9)
C90.0226 (13)0.0241 (13)0.0144 (12)0.0013 (9)0.0001 (9)0.0003 (9)
C100.0213 (12)0.0217 (12)0.0175 (12)0.0029 (9)0.0017 (9)0.0036 (9)
C110.0226 (12)0.0238 (13)0.0191 (12)0.0008 (9)0.0007 (9)0.0025 (9)
C120.0258 (13)0.0227 (12)0.0136 (12)0.0013 (9)0.0009 (9)0.0000 (9)
Geometric parameters (Å, º) top
F1—C31.361 (3)C10—C111.395 (3)
O1—C71.220 (3)C10—C121.404 (3)
C1—C21.381 (3)C11—C12i1.383 (3)
C1—C61.404 (3)C1—H1A0.9500
C2—C31.373 (3)C2—H2A0.9500
C3—C41.379 (3)C4—H4A0.9500
C4—C51.385 (3)C5—H5A0.9500
C5—C61.400 (3)C8—H8A0.9500
C6—C71.492 (3)C9—H9A0.9500
C7—C81.489 (3)C11—H11A0.9500
C8—C91.340 (3)C12—H12A0.9500
C9—C101.467 (3)
C2—C1—C6121.2 (2)C10—C11—C12i120.6 (2)
C1—C2—C3117.9 (2)C10—C12—C11i121.1 (2)
F1—C3—C2118.1 (2)C2—C1—H1A119.00
F1—C3—C4118.7 (2)C6—C1—H1A119.00
C2—C3—C4123.2 (2)C1—C2—H2A121.00
C3—C4—C5118.5 (2)C3—C2—H2A121.00
C4—C5—C6120.4 (2)C3—C4—H4A121.00
C1—C6—C5118.7 (2)C5—C4—H4A121.00
C1—C6—C7117.8 (2)C4—C5—H5A120.00
C5—C6—C7123.5 (2)C6—C5—H5A120.00
O1—C7—C6120.1 (2)C7—C8—H8A120.00
O1—C7—C8121.2 (2)C9—C8—H8A120.00
C6—C7—C8118.7 (2)C8—C9—H9A117.00
C7—C8—C9119.9 (2)C10—C9—H9A117.00
C8—C9—C10126.0 (2)C10—C11—H11A120.00
C9—C10—C11123.1 (2)C12i—C11—H11A120.00
C9—C10—C12118.6 (2)C10—C12—H12A119.00
C11—C10—C12118.3 (2)C11i—C12—H12A119.00
C6—C1—C2—C30.7 (3)C5—C6—C7—O1171.6 (2)
C2—C1—C6—C50.3 (3)C5—C6—C7—C89.1 (3)
C2—C1—C6—C7178.6 (2)O1—C7—C8—C97.5 (4)
C1—C2—C3—F1178.6 (2)C6—C7—C8—C9171.9 (2)
C1—C2—C3—C41.5 (4)C7—C8—C9—C10178.3 (2)
F1—C3—C4—C5178.3 (2)C8—C9—C10—C1115.2 (4)
C2—C3—C4—C51.8 (4)C8—C9—C10—C12163.9 (2)
C3—C4—C5—C61.3 (3)C9—C10—C11—C12i179.0 (2)
C4—C5—C6—C10.6 (3)C12—C10—C11—C12i0.1 (3)
C4—C5—C6—C7178.2 (2)C9—C10—C12—C11i179.1 (2)
C1—C6—C7—O17.2 (3)C11—C10—C12—C11i0.1 (3)
C1—C6—C7—C8172.1 (2)C10—C11—C12i—C10i0.1 (3)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F1ii0.952.503.392 (3)155
C5—H5A···O1iii0.952.593.515 (3)166
C8—H8A···O1iii0.952.633.577 (3)171
Symmetry codes: (ii) x, y1/2, z+3/2; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors extend their appreciation to Vidya Vikas Research & Development Center for the facilities and encouragement. CKQ thanks the Malaysian Government and USM for a Research University Individual (RUI) Grant (1001/PFIZIK/811278).

References

First citationChidan Kumar, C. S., Balachandran, V., Fun, H. K., Chandraju, S. & Quah, C. K. (2015). J. Mol. Struct. 1100, 299–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013). Molecules, 18, 11996–12011.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveen, S., Dileep Kumar, A., Lokeshwari, M., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2017). IUCrData, 2, x170126.  Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRajendraprasad, S., Chidan Kumar, C. S., Chandraju, S., Lokanath, N. K., Quah, C. K., Naveen, S. & Abdoh, M. (2017). IUCrData, 2, x170212.  Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds