organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2E,2′E)-1,1′-(1,4-Phenyl­ene)bis­­[3-(3-chloro­phen­yl)prop-2-en-1-one]

aDepartment of Chemistry, Sir M.V. PG Center, University of Mysore, Tubinakere, Mandya 571 402, India, bDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering and Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570 028, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang 11800 USM, Malaysia, eInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, and fDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: naveen@ioe.uni-mysore.ac.in, muneer@najah.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 7 February 2017; accepted 9 February 2017; online 14 February 2017)

The title bis-chalcone compound, C24H16Cl2O2, crystallizes with one half-mol­ecule in the asymmetric unit. The mol­ecule has crystallographic inversion symmetry and lies about an inversion centre at the centroid of the central benzene ring. The olefinic double bonds adopt E configurations. The s-trans conformation of the central C—C bond of the enone group is confirmed by a C—C—C=C torsion angle of −162.88 (17)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound is a bis-chalcone and a diketone. Numerous studies have shown that bis-chalcones possess multiple pharmacological properties (Nowakowska, 2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]). Crystalline chalcone derivatives are also of inter­est due to their second and third harmonic generation properties (Chidan et al., 2015[Chidan Kumar, C. S., Balachandran, V., Fun, H. K., Chandraju, S. & Quah, C. K. (2015). J. Mol. Struct. 1100, 299-310.]). The optical properties of the mol­ecules are also associated with their mol­ecular geometry (Kumar et al. 2013[Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013). Molecules, 18, 11996-12011.]) and, as a part of our ongoing work on such mol­ecules (Naveen et al. 2017[Naveen, S., Dileep Kumar, A., Lokeshwari, M., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2017). IUCrData, 2, x170126.]), we report here the crystal structure of the title compound.

The title compound crystallizes with one half-mol­ecule in the asymmetric unit and its structure is shown in Fig. 1[link]. The molecule has crystallographic inversion symmetry and lies about an inversion centre at the centroid of the central benzene ring. The olefinic double bond adopts an E configuration. The s-trans conformation of the central C—C bond of the enone group is confirmed by the C10—C9—C8=C7 torsion angle of −162.88 (17)°. This value is less than that reported for the related compound 2,5-bis­(4-chloro­benzyl­idene)cyclo­penta­none (Samshuddin et al., 2016[Samshuddin, S., Naveen, S., Ananya, L. N., Vishwanatha, P., Lokanath, N. K. & Abdoh, M. (2016). IUCrData, 1, x161865.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Labelled atoms are related to unlabelled atoms by the symmetry operation −x + 1, −y, −z + 1.

Synthesis and crystallization

1,4-Di­acetyl­benzene (1.62 g, 0.01 mol) was mixed with 3-chloro­benzaldehyde (2.80 g, 0.01 mol) and dissolved in methanol (30 ml). To this, 3 ml of NaOH (50%) was added. The reaction mixture was stirred for 6 h. The resulting crude solid was filtered, washed successively with distilled water and finally recrystallized from methanol (95%) to give the pure bis-chalcone. Single crystals suitable for X-ray diffraction studies were grown by slow evaporation of an acetone-methanol (1:1) solution (m.p. 413–415 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C24H16Cl2O2
Mr 407.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 294
a, b, c (Å) 22.6336 (13), 7.0895 (4), 5.9515 (3)
β (°) 95.485 (2)
V3) 950.61 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.44 × 0.26 × 0.14
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (NUMABS; Rigaku, 1999[Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.859, 0.951
No. of measured, independent and observed [I > 2σ(I)] reflections 27758, 3656, 2542
Rint 0.032
(sin θ/λ)max−1) 0.772
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.166, 1.04
No. of reflections 3656
No. of parameters 127
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.21
Computer programs: CrystalClear SM-Expert (Rigaku, 2011[Rigaku. (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrystalClear SM-Expert (Rigaku, 2011); cell refinement: CrystalClear SM-Expert (Rigaku, 2011); data reduction: CrystalClear SM-Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(2E,2'E)-1,1'-(1,4-Phenylene)bis[3-(3-chlorophenyl)prop-2-en-1-one] top
Crystal data top
C24H16Cl2O2F(000) = 420
Mr = 407.27Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2542 reflections
a = 22.6336 (13) Åθ = 2.7–33.3°
b = 7.0895 (4) ŵ = 0.36 mm1
c = 5.9515 (3) ÅT = 294 K
β = 95.485 (2)°Rectangle, white
V = 950.61 (9) Å30.44 × 0.26 × 0.14 mm
Z = 2
Data collection top
Rigaku Saturn724+
diffractometer
3656 independent reflections
Radiation source: fine-focus sealed tube2542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 18.4 pixels mm-1θmax = 33.3°, θmin = 2.7°
profile data from ω–scansh = 3434
Absorption correction: multi-scan
(NUMABS; Rigaku, 1999)
k = 1010
Tmin = 0.859, Tmax = 0.951l = 99
27758 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0803P)2 + 0.2606P]
where P = (Fo2 + 2Fc2)/3
3656 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.04854 (2)0.08183 (9)0.31155 (9)0.0694 (2)
O10.36614 (6)0.0056 (3)0.7913 (2)0.0676 (6)
C10.16738 (6)0.0708 (2)0.3479 (2)0.0351 (4)
C20.11601 (6)0.0359 (2)0.2094 (3)0.0404 (4)
C30.11768 (7)0.0401 (2)0.0040 (3)0.0447 (5)
C40.17253 (8)0.0790 (2)0.0789 (3)0.0428 (5)
C50.22454 (7)0.0476 (2)0.0578 (3)0.0399 (4)
C60.22246 (6)0.0251 (2)0.2750 (2)0.0343 (4)
C70.27480 (6)0.0426 (2)0.4386 (3)0.0390 (4)
C80.32993 (6)0.0063 (3)0.4068 (3)0.0446 (5)
C90.37737 (6)0.0004 (3)0.5956 (3)0.0427 (4)
C100.44036 (6)0.0027 (2)0.5403 (2)0.0368 (4)
C110.45674 (6)0.0564 (2)0.3326 (3)0.0399 (4)
C120.51588 (6)0.0598 (2)0.2924 (3)0.0402 (4)
H1A0.165300.124600.489400.0420*
H3A0.082800.064500.095200.0540*
H4A0.174400.127000.223500.0510*
H5A0.261000.074900.005000.0480*
H7A0.268800.093000.578800.0470*
H8A0.338800.044600.264500.0540*
H11A0.427800.093700.220000.0480*
H12A0.526600.100400.153300.0480*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0279 (2)0.1097 (5)0.0716 (3)0.0012 (2)0.0101 (2)0.0044 (3)
O10.0364 (6)0.1204 (14)0.0466 (7)0.0026 (7)0.0066 (5)0.0003 (8)
C10.0278 (6)0.0424 (7)0.0354 (6)0.0011 (5)0.0044 (5)0.0001 (5)
C20.0273 (6)0.0482 (8)0.0456 (8)0.0009 (5)0.0038 (5)0.0042 (6)
C30.0387 (8)0.0496 (9)0.0440 (8)0.0044 (6)0.0055 (6)0.0008 (6)
C40.0496 (9)0.0444 (8)0.0340 (7)0.0013 (6)0.0014 (6)0.0025 (6)
C50.0364 (7)0.0446 (8)0.0396 (7)0.0032 (6)0.0082 (5)0.0006 (6)
C60.0280 (6)0.0378 (7)0.0371 (6)0.0001 (5)0.0035 (5)0.0012 (5)
C70.0289 (6)0.0471 (8)0.0407 (7)0.0004 (5)0.0023 (5)0.0023 (6)
C80.0275 (6)0.0599 (10)0.0463 (8)0.0002 (6)0.0025 (5)0.0070 (7)
C90.0271 (6)0.0542 (9)0.0467 (8)0.0004 (6)0.0029 (5)0.0019 (7)
C100.0249 (6)0.0423 (7)0.0425 (7)0.0000 (5)0.0001 (5)0.0021 (6)
C110.0276 (6)0.0482 (8)0.0426 (7)0.0025 (5)0.0035 (5)0.0046 (6)
C120.0312 (6)0.0505 (8)0.0385 (7)0.0006 (6)0.0010 (5)0.0028 (6)
Geometric parameters (Å, º) top
Cl1—C21.7277 (15)C10—C111.389 (2)
O1—C91.216 (2)C10—C12i1.396 (2)
C1—C21.382 (2)C11—C121.382 (2)
C1—C61.3967 (19)C1—H1A0.9300
C2—C31.384 (2)C3—H3A0.9300
C3—C41.386 (2)C4—H4A0.9300
C4—C51.384 (2)C5—H5A0.9300
C5—C61.397 (2)C7—H7A0.9300
C6—C71.465 (2)C8—H8A0.9300
C7—C81.326 (2)C11—H11A0.9300
C8—C91.479 (2)C12—H12A0.9300
C9—C101.4936 (19)
C2—C1—C6119.89 (12)C10—C11—C12120.31 (15)
Cl1—C2—C1118.55 (12)C10i—C12—C11120.29 (15)
Cl1—C2—C3119.94 (12)C2—C1—H1A120.00
C1—C2—C3121.47 (13)C6—C1—H1A120.00
C2—C3—C4118.46 (15)C2—C3—H3A121.00
C3—C4—C5121.11 (16)C4—C3—H3A121.00
C4—C5—C6120.11 (15)C3—C4—H4A119.00
C1—C6—C5118.89 (12)C5—C4—H4A119.00
C1—C6—C7117.58 (12)C4—C5—H5A120.00
C5—C6—C7123.35 (13)C6—C5—H5A120.00
C6—C7—C8126.53 (16)C6—C7—H7A117.00
C7—C8—C9120.60 (16)C8—C7—H7A117.00
O1—C9—C8121.71 (14)C7—C8—H8A120.00
O1—C9—C10120.17 (14)C9—C8—H8A120.00
C8—C9—C10118.12 (14)C10—C11—H11A120.00
C9—C10—C11122.31 (13)C12—C11—H11A120.00
C9—C10—C12i118.24 (13)C11—C12—H12A120.00
C11—C10—C12i119.40 (13)C10i—C12—H12A120.00
C6—C1—C2—Cl1176.37 (11)C6—C7—C8—C9173.15 (16)
C6—C1—C2—C31.5 (2)C7—C8—C9—O117.4 (3)
C2—C1—C6—C52.9 (2)C7—C8—C9—C10162.88 (17)
C2—C1—C6—C7172.42 (13)O1—C9—C10—C11156.71 (19)
Cl1—C2—C3—C4178.63 (12)O1—C9—C10—C12i20.8 (3)
C1—C2—C3—C40.8 (2)C8—C9—C10—C1123.5 (3)
C2—C3—C4—C51.7 (2)C8—C9—C10—C12i158.96 (16)
C3—C4—C5—C60.2 (2)C9—C10—C11—C12177.09 (15)
C4—C5—C6—C12.1 (2)C12i—C10—C11—C120.4 (2)
C4—C5—C6—C7172.97 (14)C9—C10—C12i—C11i177.19 (15)
C1—C6—C7—C8174.96 (17)C11—C10—C12i—C11i0.4 (2)
C5—C6—C7—C80.1 (2)C10—C11—C12—C10i0.4 (2)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors extend their appreciation to Vidya Vikas Research & Development Center for the facilities and encouragement. CKQ thanks the Malaysian Government and USM for a Research University Individual (RUI) Grant (1001/PFIZIK/811278).

References

First citationChidan Kumar, C. S., Balachandran, V., Fun, H. K., Chandraju, S. & Quah, C. K. (2015). J. Mol. Struct. 1100, 299–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013). Molecules, 18, 11996–12011.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveen, S., Dileep Kumar, A., Lokeshwari, M., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2017). IUCrData, 2, x170126.  Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku. (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSamshuddin, S., Naveen, S., Ananya, L. N., Vishwanatha, P., Lokanath, N. K. & Abdoh, M. (2016). IUCrData, 1, x161865.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds