organic compounds
(2E,2′E)-1,1′-(1,4-Phenylene)bis[3-(3-chlorophenyl)prop-2-en-1-one]
aDepartment of Chemistry, Sir M.V. PG Center, University of Mysore, Tubinakere, Mandya 571 402, India, bDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering and Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570 028, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang 11800 USM, Malaysia, eInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, and fDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: naveen@ioe.uni-mysore.ac.in, muneer@najah.edu
The title bis-chalcone compound, C24H16Cl2O2, crystallizes with one half-molecule in the The molecule has crystallographic inversion symmetry and lies about an inversion centre at the centroid of the central benzene ring. The olefinic double bonds adopt E configurations. The s-trans conformation of the central C—C bond of the enone group is confirmed by a C—C—C=C torsion angle of −162.88 (17)°.
Keywords: crystal structure; bis-chalcone; mirror symmetry.
CCDC reference: 1449583
Structure description
The title compound is a bis-chalcone and a diketone. Numerous studies have shown that bis-chalcones possess multiple pharmacological properties (Nowakowska, 2007). Crystalline chalcone derivatives are also of interest due to their second and third harmonic generation properties (Chidan et al., 2015). The optical properties of the molecules are also associated with their molecular geometry (Kumar et al. 2013) and, as a part of our ongoing work on such molecules (Naveen et al. 2017), we report here the of the title compound.
The title compound crystallizes with one half-molecule in the . The molecule has crystallographic inversion symmetry and lies about an inversion centre at the centroid of the central benzene ring. The olefinic double bond adopts an E configuration. The s-trans conformation of the central C—C bond of the enone group is confirmed by the C10—C9—C8=C7 torsion angle of −162.88 (17)°. This value is less than that reported for the related compound 2,5-bis(4-chlorobenzylidene)cyclopentanone (Samshuddin et al., 2016).
and its structure is shown in Fig. 1Synthesis and crystallization
1,4-Diacetylbenzene (1.62 g, 0.01 mol) was mixed with 3-chlorobenzaldehyde (2.80 g, 0.01 mol) and dissolved in methanol (30 ml). To this, 3 ml of NaOH (50%) was added. The reaction mixture was stirred for 6 h. The resulting crude solid was filtered, washed successively with distilled water and finally recrystallized from methanol (95%) to give the pure bis-chalcone. Single crystals suitable for X-ray diffraction studies were grown by slow evaporation of an acetone-methanol (1:1) solution (m.p. 413–415 K).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1449583
https://doi.org/10.1107/S2414314617002127/sj4088sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617002127/sj4088Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617002127/sj4088Isup3.cml
Data collection: CrystalClear SM-Expert (Rigaku, 2011); cell
CrystalClear SM-Expert (Rigaku, 2011); data reduction: CrystalClear SM-Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).C24H16Cl2O2 | F(000) = 420 |
Mr = 407.27 | Dx = 1.423 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2542 reflections |
a = 22.6336 (13) Å | θ = 2.7–33.3° |
b = 7.0895 (4) Å | µ = 0.36 mm−1 |
c = 5.9515 (3) Å | T = 294 K |
β = 95.485 (2)° | Rectangle, white |
V = 950.61 (9) Å3 | 0.44 × 0.26 × 0.14 mm |
Z = 2 |
Rigaku Saturn724+ diffractometer | 3656 independent reflections |
Radiation source: fine-focus sealed tube | 2542 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 18.4 pixels mm-1 | θmax = 33.3°, θmin = 2.7° |
profile data from ω–scans | h = −34→34 |
Absorption correction: multi-scan (NUMABS; Rigaku, 1999) | k = −10→10 |
Tmin = 0.859, Tmax = 0.951 | l = −9→9 |
27758 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.166 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0803P)2 + 0.2606P] where P = (Fo2 + 2Fc2)/3 |
3656 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.04854 (2) | 0.08183 (9) | 0.31155 (9) | 0.0694 (2) | |
O1 | 0.36614 (6) | 0.0056 (3) | 0.7913 (2) | 0.0676 (6) | |
C1 | 0.16738 (6) | 0.0708 (2) | 0.3479 (2) | 0.0351 (4) | |
C2 | 0.11601 (6) | 0.0359 (2) | 0.2094 (3) | 0.0404 (4) | |
C3 | 0.11768 (7) | −0.0401 (2) | −0.0040 (3) | 0.0447 (5) | |
C4 | 0.17253 (8) | −0.0790 (2) | −0.0789 (3) | 0.0428 (5) | |
C5 | 0.22454 (7) | −0.0476 (2) | 0.0578 (3) | 0.0399 (4) | |
C6 | 0.22246 (6) | 0.0251 (2) | 0.2750 (2) | 0.0343 (4) | |
C7 | 0.27480 (6) | 0.0426 (2) | 0.4386 (3) | 0.0390 (4) | |
C8 | 0.32993 (6) | −0.0063 (3) | 0.4068 (3) | 0.0446 (5) | |
C9 | 0.37737 (6) | −0.0004 (3) | 0.5956 (3) | 0.0427 (4) | |
C10 | 0.44036 (6) | −0.0027 (2) | 0.5403 (2) | 0.0368 (4) | |
C11 | 0.45674 (6) | 0.0564 (2) | 0.3326 (3) | 0.0399 (4) | |
C12 | 0.51588 (6) | 0.0598 (2) | 0.2924 (3) | 0.0402 (4) | |
H1A | 0.16530 | 0.12460 | 0.48940 | 0.0420* | |
H3A | 0.08280 | −0.06450 | −0.09520 | 0.0540* | |
H4A | 0.17440 | −0.12700 | −0.22350 | 0.0510* | |
H5A | 0.26100 | −0.07490 | 0.00500 | 0.0480* | |
H7A | 0.26880 | 0.09300 | 0.57880 | 0.0470* | |
H8A | 0.33880 | −0.04460 | 0.26450 | 0.0540* | |
H11A | 0.42780 | 0.09370 | 0.22000 | 0.0480* | |
H12A | 0.52660 | 0.10040 | 0.15330 | 0.0480* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0279 (2) | 0.1097 (5) | 0.0716 (3) | 0.0012 (2) | 0.0101 (2) | −0.0044 (3) |
O1 | 0.0364 (6) | 0.1204 (14) | 0.0466 (7) | 0.0026 (7) | 0.0066 (5) | 0.0003 (8) |
C1 | 0.0278 (6) | 0.0424 (7) | 0.0354 (6) | 0.0011 (5) | 0.0044 (5) | −0.0001 (5) |
C2 | 0.0273 (6) | 0.0482 (8) | 0.0456 (8) | −0.0009 (5) | 0.0038 (5) | 0.0042 (6) |
C3 | 0.0387 (8) | 0.0496 (9) | 0.0440 (8) | −0.0044 (6) | −0.0055 (6) | 0.0008 (6) |
C4 | 0.0496 (9) | 0.0444 (8) | 0.0340 (7) | 0.0013 (6) | 0.0014 (6) | −0.0025 (6) |
C5 | 0.0364 (7) | 0.0446 (8) | 0.0396 (7) | 0.0032 (6) | 0.0082 (5) | −0.0006 (6) |
C6 | 0.0280 (6) | 0.0378 (7) | 0.0371 (6) | −0.0001 (5) | 0.0035 (5) | 0.0012 (5) |
C7 | 0.0289 (6) | 0.0471 (8) | 0.0407 (7) | 0.0004 (5) | 0.0023 (5) | −0.0023 (6) |
C8 | 0.0275 (6) | 0.0599 (10) | 0.0463 (8) | 0.0002 (6) | 0.0025 (5) | −0.0070 (7) |
C9 | 0.0271 (6) | 0.0542 (9) | 0.0467 (8) | −0.0004 (6) | 0.0029 (5) | −0.0019 (7) |
C10 | 0.0249 (6) | 0.0423 (7) | 0.0425 (7) | 0.0000 (5) | 0.0001 (5) | −0.0021 (6) |
C11 | 0.0276 (6) | 0.0482 (8) | 0.0426 (7) | 0.0025 (5) | −0.0035 (5) | 0.0046 (6) |
C12 | 0.0312 (6) | 0.0505 (8) | 0.0385 (7) | −0.0006 (6) | 0.0010 (5) | 0.0028 (6) |
Cl1—C2 | 1.7277 (15) | C10—C11 | 1.389 (2) |
O1—C9 | 1.216 (2) | C10—C12i | 1.396 (2) |
C1—C2 | 1.382 (2) | C11—C12 | 1.382 (2) |
C1—C6 | 1.3967 (19) | C1—H1A | 0.9300 |
C2—C3 | 1.384 (2) | C3—H3A | 0.9300 |
C3—C4 | 1.386 (2) | C4—H4A | 0.9300 |
C4—C5 | 1.384 (2) | C5—H5A | 0.9300 |
C5—C6 | 1.397 (2) | C7—H7A | 0.9300 |
C6—C7 | 1.465 (2) | C8—H8A | 0.9300 |
C7—C8 | 1.326 (2) | C11—H11A | 0.9300 |
C8—C9 | 1.479 (2) | C12—H12A | 0.9300 |
C9—C10 | 1.4936 (19) | ||
C2—C1—C6 | 119.89 (12) | C10—C11—C12 | 120.31 (15) |
Cl1—C2—C1 | 118.55 (12) | C10i—C12—C11 | 120.29 (15) |
Cl1—C2—C3 | 119.94 (12) | C2—C1—H1A | 120.00 |
C1—C2—C3 | 121.47 (13) | C6—C1—H1A | 120.00 |
C2—C3—C4 | 118.46 (15) | C2—C3—H3A | 121.00 |
C3—C4—C5 | 121.11 (16) | C4—C3—H3A | 121.00 |
C4—C5—C6 | 120.11 (15) | C3—C4—H4A | 119.00 |
C1—C6—C5 | 118.89 (12) | C5—C4—H4A | 119.00 |
C1—C6—C7 | 117.58 (12) | C4—C5—H5A | 120.00 |
C5—C6—C7 | 123.35 (13) | C6—C5—H5A | 120.00 |
C6—C7—C8 | 126.53 (16) | C6—C7—H7A | 117.00 |
C7—C8—C9 | 120.60 (16) | C8—C7—H7A | 117.00 |
O1—C9—C8 | 121.71 (14) | C7—C8—H8A | 120.00 |
O1—C9—C10 | 120.17 (14) | C9—C8—H8A | 120.00 |
C8—C9—C10 | 118.12 (14) | C10—C11—H11A | 120.00 |
C9—C10—C11 | 122.31 (13) | C12—C11—H11A | 120.00 |
C9—C10—C12i | 118.24 (13) | C11—C12—H12A | 120.00 |
C11—C10—C12i | 119.40 (13) | C10i—C12—H12A | 120.00 |
C6—C1—C2—Cl1 | 176.37 (11) | C6—C7—C8—C9 | −173.15 (16) |
C6—C1—C2—C3 | −1.5 (2) | C7—C8—C9—O1 | 17.4 (3) |
C2—C1—C6—C5 | 2.9 (2) | C7—C8—C9—C10 | −162.88 (17) |
C2—C1—C6—C7 | −172.42 (13) | O1—C9—C10—C11 | −156.71 (19) |
Cl1—C2—C3—C4 | −178.63 (12) | O1—C9—C10—C12i | 20.8 (3) |
C1—C2—C3—C4 | −0.8 (2) | C8—C9—C10—C11 | 23.5 (3) |
C2—C3—C4—C5 | 1.7 (2) | C8—C9—C10—C12i | −158.96 (16) |
C3—C4—C5—C6 | −0.2 (2) | C9—C10—C11—C12 | 177.09 (15) |
C4—C5—C6—C1 | −2.1 (2) | C12i—C10—C11—C12 | −0.4 (2) |
C4—C5—C6—C7 | 172.97 (14) | C9—C10—C12i—C11i | −177.19 (15) |
C1—C6—C7—C8 | 174.96 (17) | C11—C10—C12i—C11i | 0.4 (2) |
C5—C6—C7—C8 | −0.1 (2) | C10—C11—C12—C10i | 0.4 (2) |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
The authors extend their appreciation to Vidya Vikas Research & Development Center for the facilities and encouragement. CKQ thanks the Malaysian Government and USM for a Research University Individual (RUI) Grant (1001/PFIZIK/811278).
References
Chidan Kumar, C. S., Balachandran, V., Fun, H. K., Chandraju, S. & Quah, C. K. (2015). J. Mol. Struct. 1100, 299–310. Web of Science CSD CrossRef CAS Google Scholar
Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013). Molecules, 18, 11996–12011. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Naveen, S., Dileep Kumar, A., Lokeshwari, M., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2017). IUCrData, 2, x170126. Google Scholar
Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku. (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Samshuddin, S., Naveen, S., Ananya, L. N., Vishwanatha, P., Lokanath, N. K. & Abdoh, M. (2016). IUCrData, 1, x161865. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.