organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Hy­dr­oxy-3-(2-oxo-2,3-di­hydro-1H-indol-3-yl)-2,3-di­hydro-1H-indol-2-one

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, Sohag-82534, Egypt, and fChemistry Department, College of Education, Salahaddin University-Hawler, Erbil, Kurdistan Region, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 24 January 2017; accepted 27 January 2017; online 3 February 2017)

The conformation of the title mol­ecule, C16H12N2O3, is partly determined by an intra­molecular C=O⋯π inter­action between one carbonyl group and the five-membered ring of the other indolinone moiety. The crystal packing consists of layers parallel to (001) formed by a combination of N—H⋯O and O—H⋯O hydrogen bonds and ππ stacking inter­actions. Both the N—H⋯O and O—H⋯O hydrogen bonds generate inversion dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indole scaffold compounds are synthetically important substrates that can be used for the synthesis of a large variety of heterocyclic compounds, and as raw material for drug synthesis (Grewal, 2014[Grewal, A. S. (2014). Int. J. Pharm. Res. 6, 1-7.]). Recently, isatin derivatives have attracted strong inter­est in organic and medicinal chemistry due to their potent biological and pharmacological activities including anti­tumor (Premanathan et al., 2012[Premanathan, M., Radhakrishnan, S., Kulangiappar, K., Singaravelu, G., Thirumalaiarasu, V., Sivakumar, T. & Kathiresan, K. (2012). Indian J. Med. Res. 136, 822-826.]; Havrylyuk et al., 2011[Havrylyuk, D., Kovach, N., Zimenkovsky, B., Vasylenko, O. & Lesyk, R. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 514-522.]), anti­microbial (Singh et al., 2010[Singh, U. K., Pandeya, S. N., Singh, A., Srivastava, B. K. & Pandey, M. (2010). Int. J. Pharm. Sci. Drug Res. 2, 151-154.]; Ali & Alam, 1994[Ali, S. & Alam, M. (1994). Arch. Pharm. Res. 17, 131-133.]; Pandeya et al., 1999b[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999b). Farmaco, 54, 624-628.]), anti-inflammatory and analgesic (Abele et al., 2003[Abele, E., Abele, R., Dzenitis, O. & Lukevics, E. (2003). Chem. Heterocycl. Compd. 39, 3-35.]; Mondal, et al., 2010[Mondal, P., Banerjee, M., Jana, S. & Bose, A. (2010). J. Young Pharmacists, 2, 169-172.]), anti­mycobacterial (Aboul-Fadl et al., 2010[Aboul-Fadl, T., Bin-Jubair, F. A. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578-4586.]; Sriram et al., 2006[Sriram, D., Yogeeswari, P. & Meena, K. (2006). Pharmazie, 61, 274-277.]), anti­convulsant (Malawska, 2005[Malawska, B. (2005). Curr. Top. Med. Chem. 5, 69-85.]), anti­viral (Selvam et al., 2006[Selvam, P., Murugesh, N., Chandramohan, M., Sidwell, R. W., Wandersee, M. K. & Smee, D. F. (2006). Antivir. Chem. Chemother. 17, 269-274.]; Selvam et al., 2008[Selvam, P., Murgesh, N., Chandramohan, M., De Clercq, E., Keyaerts, E., Vijgen, L., Maes, P., Neyts, J. & Ranst, M. V. (2008). Indian J. Pharm. Sci. 70, 91-94.]; Abbas et al., 2013[Abbas, S. Y., Farag, A. A., Ammar, Y. A., Atrees, A. A., Mohamed, A. F. & El-Henawy, A. A. (2013). Monatsh. Chem. 144, 1725-1733.]), anthelmintic (Suresh et al., 2011[Suresh, C. H., Rao, J. V., Jayaveera, K. N. & Subudhi, S. K. (2011). Int. Res. J. Pharm. 2, 257-261.]), anti-HIV applications (Pandeya et al., 1999a[Pandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999a). Eur. J. Pharm. Sci. 9, 25-31.]) and anti-oxidant (Andreani et al., 2010[Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Cremonini, M. A., Placucci, G., Cervellati, R. & Greco, E. (2010). Eur. J. Med. Chem. 45, 1374-1378.]; Kiran et al. 2013[Kiran, G., Maneshwar, T., Rajeshwar, Y. & Sarangapani, M. (2013). J. Chem. (Hindawi), pp. 1-7.]). In this context, the present study reports the synthesis and crystal structure determination of the title bis-indole derivative.

In the title compound (Fig. 1[link]), the indolinone moieties are close to being planar, with r.m.s. deviations of the nine atoms from the mean plane being 0.025 Å for the ring system containing atom N1 and 0.014 Å for that containing atom N2. The dihedral angle between the mean planes of the two indolinone moieties is 58.69 (3)°. The conformation of the mol­ecule is determined in part by a C=O⋯π inter­action between the C10=O3 carbonyl group and the C1/C6/C7/C8/N1 ring (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1,C6,C7,C8,N1 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.84 1.93 2.7575 (17) 167
N1—H1⋯O3ii 0.94 (2) 1.96 (2) 2.8644 (17) 161 (2)
N2—H2B⋯O3iii 0.90 (3) 2.00 (3) 2.8882 (18) 173 (2)
C10—O3⋯Cg1 1.24 (1) 2.92 (1) 3.0414 (13) 73 (1)
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The title mol­ecule with the atom-labeling scheme and 50% probability ellipsoids. The C=O⋯π(ring) inter­action is shown as a dotted line. Cg1 is the centroid of the C1/C6/C7/C8/N1 ring.

The bond lengths and angles of the title compound are comparable with those reported for related compounds such as (3E)-3-[(4-butyl­phen­yl)imino]-1,3-di­hydro-2H-indol-2-one (Akkurt et al., 2003[Akkurt, M., Öztürk, S., Erçağ, A., Özgür, M. Ü. & Heinemann, F. W. (2003). Acta Cryst. E59, o780-o782.]), 2-oxo-2,3-di­hydro-1H-indol-3-one nicotinoylhydrazone (Ali et al., 2005[Ali, H. M., Abdul Halim, S. N., Basirun, W. J. & Ng, S. W. (2005). Acta Cryst. E61, o916-o917.]) and 3-(2-amino-1-methyl-4-4,5-di­hydro-1H-imidazol-5-yl)-3-hy­droxy-1-phenyl­indolin-2-one ethanol solvate (Penthala et al., 2009[Penthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009). Acta Cryst. E65, o2439-o2440.]).

The N2—H2B⋯O3 and the O2—H2A⋯O1 hydrogen bonds (Table 1[link]) generate inversion dimers with R22(8) and R22(10) ring motifs, respectively (Fig. 2[link]). The other N1—H1⋯O3 contact also forms an inversion dimer but, in this case, with an R22(14) motif. A combination of N1—H1⋯O3 and N2—H2B⋯O3 hydrogen bonds generate zigzag chains of mol­ecules running parallel to the b-axis direction which are formed into sheets parallel to (001) by pairwise O2—H2A⋯O1 hydrogen bonds (Figs. 2[link] and 3[link]). The layer formation is assisted by complementary ππ stacking inter­actions [Cg2⋯Cg3 = 3.571 (1) Å] between the C11–C16 and C16/C9/C10/C11/N2 rings (Fig. 4[link]).

[Figure 2]
Figure 2
Detail of the O—H⋯O (red dotted lines) and N—H⋯O (blue dotted lines) hydrogen bonds. [Symmetry codes: (ii) 1 − x, 1 − y, 1 − z; (iii) 1 − x, 2 − y, 1 − z; (iv) 2 − x, 2 − y, 1 − z.]
[Figure 3]
Figure 3
Packing showing one of the N—H⋯O hydrogen bonded (blue dotted lines) chains.
[Figure 4]
Figure 4
Details of the ππ stacking inter­actions. Cg2 and Cg3 are the centroids of the C9/C10/N3/C11/C16 and C11–C16 rings, respectively. [Symmetry code: (i) 2 − x, 1 − y, 1 − z.]

Synthesis and crystallization

The title compound was obtained (Fig. 5[link]) as a major product during an an attempt to synthesize a new tridentate ONO-dibasic hydrazone (1) derived from the condensation of phenyl alanine with isatin by the following procedures:

[Figure 5]
Figure 5
A scheme showing the reaction leading to the formation of the title compound.

A methano­lic solution (15 ml) of isatin (1 mmol) was added dropwise to an aqueous/methano­lic (1:1) (10 ml) solution of phenyl alanine at room temperature. The reaction mixture was refluxed at 353 K (monitored by TLC) for 2 h, resulting in the formation of a dark-red precipitate. The precipitate was extracted by filtration and washed many times with water and diethyl ether then dried in an oven. The final product was recystallized in hot methanol to furnish good quality dark-red crystals of 3-hy­droxy-3-(2-oxo-2,3-di­hydro-1H-indol-3-yl)-2,3-di­hydro-1H-indol-2-one (2) in 84% yield. Phenyl alanine may act as a Lewis base to activate the isatin causing dimerization in the aqueous/methano­lic media.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydroxyl hydrogen did not refine satisfactorily although definitely located in a difference map, possibly due to unresolved disorder. Consequently it was placed in a calculated position (SHELXL HFIX 147 instruction) and included as a riding contribution.

Table 2
Experimental details

Crystal data
Chemical formula C16H12N2O3
Mr 280.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 7.7193 (3), 8.6977 (3), 9.5907 (4)
α, β, γ (°) 90.457 (2), 95.070 (2), 90.627 (2)
V3) 641.34 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.84
Crystal size (mm) 0.14 × 0.07 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.89, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 8464, 2487, 2137
Rint 0.033
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.06
No. of reflections 2487
No. of parameters 235
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.28
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Hydroxy-3-(2-oxo-2,3-dihydro-1H-indol-3-yl)-2,3-dihydro-1H-indol-2-one top
Crystal data top
C16H12N2O3Z = 2
Mr = 280.28F(000) = 292
Triclinic, P1Dx = 1.451 Mg m3
a = 7.7193 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.6977 (3) ÅCell parameters from 6334 reflections
c = 9.5907 (4) Åθ = 4.6–72.4°
α = 90.457 (2)°µ = 0.84 mm1
β = 95.070 (2)°T = 150 K
γ = 90.627 (2)°Column, dark yellow-orange
V = 641.34 (4) Å30.14 × 0.07 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2487 independent reflections
Radiation source: INCOATEC IµS micro-focus source2137 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 4.6°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1010
Tmin = 0.89, Tmax = 0.96l = 1111
8464 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.043P)2 + 0.3252P]
where P = (Fo2 + 2Fc2)/3
2487 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The hydroxyl hydrogen did not refine satisfactorily although definitely located in a difference map, possibly due to unresolved disorder. Consequently it was placed in a calculated position (SHELXL HFIX 147 instruction) and included as a riding contribution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.78629 (14)1.05555 (13)0.52109 (12)0.0311 (3)
O20.94772 (15)0.94251 (13)0.26711 (13)0.0311 (3)
H2A1.02650.95860.33190.047*
O30.58356 (14)0.70275 (12)0.52877 (12)0.0272 (3)
N10.56106 (17)1.03152 (15)0.34911 (14)0.0252 (3)
H10.491 (3)1.105 (3)0.388 (2)0.052 (6)*
N20.69437 (18)0.50298 (15)0.40763 (14)0.0248 (3)
H2B0.613 (3)0.433 (3)0.423 (2)0.051 (6)*
C10.5182 (2)0.93711 (17)0.23090 (16)0.0243 (3)
C20.3649 (2)0.9328 (2)0.14575 (18)0.0306 (4)
H20.266 (3)1.000 (2)0.162 (2)0.033 (5)*
C30.3529 (2)0.8279 (2)0.03503 (19)0.0341 (4)
H30.246 (3)0.824 (2)0.025 (2)0.042 (6)*
C40.4899 (2)0.7319 (2)0.01088 (18)0.0334 (4)
H40.474 (3)0.656 (2)0.070 (2)0.037 (5)*
C50.6447 (2)0.73867 (19)0.09783 (17)0.0281 (4)
H50.743 (3)0.672 (2)0.084 (2)0.033 (5)*
C60.6578 (2)0.84201 (17)0.20856 (16)0.0230 (3)
C70.80112 (19)0.87379 (17)0.32288 (16)0.0224 (3)
C80.71796 (19)0.99649 (17)0.41294 (17)0.0239 (3)
C90.85503 (19)0.73274 (17)0.41305 (16)0.0225 (3)
H90.928 (2)0.7736 (19)0.5023 (18)0.022 (4)*
C100.69513 (19)0.64824 (17)0.45866 (16)0.0222 (3)
C110.8409 (2)0.47612 (17)0.33341 (16)0.0233 (3)
C120.8850 (2)0.34313 (19)0.26664 (18)0.0289 (4)
H120.812 (3)0.251 (2)0.267 (2)0.033 (5)*
C131.0385 (2)0.3456 (2)0.20033 (19)0.0326 (4)
H131.073 (3)0.257 (2)0.153 (2)0.039 (5)*
C141.1432 (2)0.4764 (2)0.20282 (19)0.0336 (4)
H141.251 (3)0.476 (2)0.159 (2)0.039 (5)*
C151.0967 (2)0.6096 (2)0.27092 (18)0.0288 (4)
H151.169 (2)0.701 (2)0.273 (2)0.031 (5)*
C160.94318 (19)0.60941 (17)0.33510 (16)0.0229 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0273 (6)0.0304 (6)0.0357 (7)0.0045 (5)0.0043 (5)0.0121 (5)
O20.0265 (6)0.0299 (6)0.0382 (7)0.0054 (5)0.0111 (5)0.0011 (5)
O30.0281 (6)0.0223 (5)0.0331 (6)0.0003 (4)0.0133 (5)0.0023 (4)
N10.0236 (6)0.0220 (6)0.0306 (7)0.0002 (5)0.0065 (5)0.0039 (5)
N20.0262 (7)0.0193 (6)0.0302 (7)0.0027 (5)0.0102 (5)0.0015 (5)
C10.0257 (8)0.0217 (7)0.0265 (8)0.0028 (6)0.0076 (6)0.0003 (6)
C20.0259 (8)0.0344 (9)0.0321 (9)0.0018 (7)0.0057 (7)0.0022 (7)
C30.0291 (8)0.0430 (10)0.0297 (9)0.0039 (7)0.0001 (7)0.0009 (7)
C40.0391 (9)0.0346 (9)0.0263 (9)0.0015 (7)0.0021 (7)0.0041 (7)
C50.0326 (8)0.0258 (8)0.0265 (8)0.0017 (7)0.0058 (6)0.0016 (6)
C60.0235 (7)0.0203 (7)0.0258 (8)0.0031 (6)0.0058 (6)0.0016 (6)
C70.0202 (7)0.0195 (7)0.0283 (8)0.0042 (6)0.0075 (6)0.0019 (6)
C80.0229 (7)0.0187 (7)0.0310 (8)0.0052 (6)0.0086 (6)0.0018 (6)
C90.0203 (7)0.0214 (7)0.0263 (8)0.0015 (6)0.0050 (6)0.0033 (6)
C100.0233 (7)0.0203 (7)0.0235 (7)0.0001 (6)0.0043 (6)0.0001 (6)
C110.0247 (7)0.0222 (7)0.0236 (8)0.0018 (6)0.0053 (6)0.0004 (6)
C120.0358 (9)0.0218 (8)0.0298 (8)0.0012 (7)0.0074 (7)0.0013 (6)
C130.0384 (9)0.0281 (9)0.0327 (9)0.0070 (7)0.0100 (7)0.0042 (7)
C140.0296 (9)0.0364 (9)0.0367 (9)0.0052 (7)0.0127 (7)0.0032 (7)
C150.0237 (8)0.0287 (8)0.0347 (9)0.0005 (7)0.0067 (6)0.0019 (7)
C160.0226 (7)0.0213 (7)0.0250 (7)0.0010 (6)0.0030 (6)0.0014 (6)
Geometric parameters (Å, º) top
O1—C81.2275 (19)C5—C61.382 (2)
O2—C71.4217 (18)C5—H50.97 (2)
O2—H2A0.8400C6—C71.509 (2)
O3—C101.2348 (18)C7—C91.546 (2)
N1—C81.347 (2)C7—C81.548 (2)
N1—C11.408 (2)C9—C161.505 (2)
N1—H10.94 (2)C9—C101.528 (2)
N2—C101.3510 (19)C9—H91.039 (17)
N2—C111.4091 (19)C11—C121.378 (2)
N2—H2B0.90 (3)C11—C161.395 (2)
C1—C21.378 (2)C12—C131.394 (2)
C1—C61.396 (2)C12—H120.97 (2)
C2—C31.391 (3)C13—C141.387 (3)
C2—H20.99 (2)C13—H130.95 (2)
C3—C41.388 (3)C14—C151.392 (2)
C3—H30.97 (2)C14—H140.97 (2)
C4—C51.396 (2)C15—C161.383 (2)
C4—H41.02 (2)C15—H150.96 (2)
C7—O2—H2A109.5O1—C8—N1126.03 (14)
C8—N1—C1111.47 (13)O1—C8—C7125.72 (14)
C8—N1—H1120.7 (14)N1—C8—C7108.20 (13)
C1—N1—H1127.6 (14)C16—C9—C10102.45 (12)
C10—N2—C11111.35 (13)C16—C9—C7113.88 (13)
C10—N2—H2B123.3 (14)C10—C9—C7110.84 (12)
C11—N2—H2B125.3 (14)C16—C9—H9114.1 (9)
C2—C1—C6122.38 (15)C10—C9—H9108.2 (10)
C2—C1—N1127.82 (14)C7—C9—H9107.2 (9)
C6—C1—N1109.80 (14)O3—C10—N2125.26 (14)
C1—C2—C3117.15 (16)O3—C10—C9126.29 (14)
C1—C2—H2122.0 (11)N2—C10—C9108.44 (13)
C3—C2—H2120.9 (11)C12—C11—C16122.28 (15)
C4—C3—C2121.50 (16)C12—C11—N2128.31 (15)
C4—C3—H3120.7 (12)C16—C11—N2109.41 (13)
C2—C3—H3117.8 (12)C11—C12—C13117.30 (16)
C3—C4—C5120.50 (16)C11—C12—H12120.7 (11)
C3—C4—H4118.5 (11)C13—C12—H12121.9 (11)
C5—C4—H4121.0 (11)C14—C13—C12121.20 (15)
C6—C5—C4118.51 (15)C14—C13—H13118.8 (13)
C6—C5—H5119.3 (11)C12—C13—H13119.9 (13)
C4—C5—H5122.2 (11)C13—C14—C15120.69 (16)
C5—C6—C1119.95 (15)C13—C14—H14120.5 (12)
C5—C6—C7131.78 (14)C15—C14—H14118.8 (12)
C1—C6—C7108.24 (13)C16—C15—C14118.65 (16)
O2—C7—C6110.72 (12)C16—C15—H15120.3 (11)
O2—C7—C9111.02 (12)C14—C15—H15121.0 (11)
C6—C7—C9114.49 (12)C15—C16—C11119.85 (14)
O2—C7—C8107.89 (12)C15—C16—C9131.84 (14)
C6—C7—C8102.04 (12)C11—C16—C9108.31 (13)
C9—C7—C8110.15 (12)
C8—N1—C1—C2175.44 (16)C6—C7—C9—C1667.76 (16)
C8—N1—C1—C64.44 (19)C8—C7—C9—C16177.95 (12)
C6—C1—C2—C30.4 (2)O2—C7—C9—C10173.39 (12)
N1—C1—C2—C3179.48 (16)C6—C7—C9—C1047.12 (17)
C1—C2—C3—C40.3 (3)C8—C7—C9—C1067.17 (15)
C2—C3—C4—C50.2 (3)C11—N2—C10—O3179.33 (14)
C3—C4—C5—C60.4 (3)C11—N2—C10—C91.48 (17)
C4—C5—C6—C10.3 (2)C16—C9—C10—O3178.65 (15)
C4—C5—C6—C7177.50 (16)C7—C9—C10—O359.5 (2)
C2—C1—C6—C50.1 (2)C16—C9—C10—N22.16 (16)
N1—C1—C6—C5179.79 (14)C7—C9—C10—N2119.69 (14)
C2—C1—C6—C7178.38 (15)C10—N2—C11—C12179.90 (16)
N1—C1—C6—C71.50 (17)C10—N2—C11—C160.08 (18)
C5—C6—C7—O268.9 (2)C16—C11—C12—C130.4 (2)
C1—C6—C7—O2113.13 (14)N2—C11—C12—C13179.79 (16)
C5—C6—C7—C957.6 (2)C11—C12—C13—C140.6 (3)
C1—C6—C7—C9120.45 (14)C12—C13—C14—C150.6 (3)
C5—C6—C7—C8176.54 (17)C13—C14—C15—C160.5 (3)
C1—C6—C7—C81.48 (15)C14—C15—C16—C111.5 (2)
C1—N1—C8—O1177.15 (15)C14—C15—C16—C9178.43 (16)
C1—N1—C8—C75.31 (17)C12—C11—C16—C151.5 (2)
O2—C7—C8—O165.0 (2)N2—C11—C16—C15178.67 (14)
C6—C7—C8—O1178.37 (15)C12—C11—C16—C9178.46 (15)
C9—C7—C8—O156.38 (19)N2—C11—C16—C91.37 (17)
O2—C7—C8—N1112.59 (14)C10—C9—C16—C15177.95 (17)
C6—C7—C8—N14.09 (15)C7—C9—C16—C1562.3 (2)
C9—C7—C8—N1126.08 (13)C10—C9—C16—C112.10 (16)
O2—C7—C9—C1658.50 (16)C7—C9—C16—C11117.65 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1,C6,C7,C8,N1 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.841.932.7575 (17)167
N1—H1···O3ii0.94 (2)1.96 (2)2.8644 (17)161 (2)
N2—H2B···O3iii0.90 (3)2.00 (3)2.8882 (18)173 (2)
C10—O3···Cg11.24 (1)2.92 (1)3.0414 (13)73 (1)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbbas, S. Y., Farag, A. A., Ammar, Y. A., Atrees, A. A., Mohamed, A. F. & El-Henawy, A. A. (2013). Monatsh. Chem. 144, 1725–1733.  Web of Science CrossRef CAS Google Scholar
First citationAbele, E., Abele, R., Dzenitis, O. & Lukevics, E. (2003). Chem. Heterocycl. Compd. 39, 3–35.  CrossRef CAS Google Scholar
First citationAboul-Fadl, T., Bin-Jubair, F. A. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578–4586.  Web of Science CAS PubMed Google Scholar
First citationAkkurt, M., Öztürk, S., Erçağ, A., Özgür, M. Ü. & Heinemann, F. W. (2003). Acta Cryst. E59, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, H. M., Abdul Halim, S. N., Basirun, W. J. & Ng, S. W. (2005). Acta Cryst. E61, o916–o917.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, S. & Alam, M. (1994). Arch. Pharm. Res. 17, 131–133.  CrossRef PubMed CAS Google Scholar
First citationAndreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Cremonini, M. A., Placucci, G., Cervellati, R. & Greco, E. (2010). Eur. J. Med. Chem. 45, 1374–1378.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrewal, A. S. (2014). Int. J. Pharm. Res. 6, 1–7.  Google Scholar
First citationHavrylyuk, D., Kovach, N., Zimenkovsky, B., Vasylenko, O. & Lesyk, R. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 514–522.  Web of Science CrossRef CAS Google Scholar
First citationKiran, G., Maneshwar, T., Rajeshwar, Y. & Sarangapani, M. (2013). J. Chem. (Hindawi), pp. 1–7.  Google Scholar
First citationMalawska, B. (2005). Curr. Top. Med. Chem. 5, 69–85.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMondal, P., Banerjee, M., Jana, S. & Bose, A. (2010). J. Young Pharmacists, 2, 169-172.  CrossRef CAS Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999a). Eur. J. Pharm. Sci. 9, 25–31.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999b). Farmaco, 54, 624–628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPenthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009). Acta Cryst. E65, o2439–o2440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPremanathan, M., Radhakrishnan, S., Kulangiappar, K., Singaravelu, G., Thirumalaiarasu, V., Sivakumar, T. & Kathiresan, K. (2012). Indian J. Med. Res. 136, 822–826.  Web of Science CAS PubMed Google Scholar
First citationSelvam, P., Murgesh, N., Chandramohan, M., De Clercq, E., Keyaerts, E., Vijgen, L., Maes, P., Neyts, J. & Ranst, M. V. (2008). Indian J. Pharm. Sci. 70, 91–94.  CrossRef CAS PubMed Google Scholar
First citationSelvam, P., Murugesh, N., Chandramohan, M., Sidwell, R. W., Wandersee, M. K. & Smee, D. F. (2006). Antivir. Chem. Chemother. 17, 269–274.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, U. K., Pandeya, S. N., Singh, A., Srivastava, B. K. & Pandey, M. (2010). Int. J. Pharm. Sci. Drug Res. 2, 151–154.  CAS Google Scholar
First citationSriram, D., Yogeeswari, P. & Meena, K. (2006). Pharmazie, 61, 274–277.  Web of Science PubMed CAS Google Scholar
First citationSuresh, C. H., Rao, J. V., Jayaveera, K. N. & Subudhi, S. K. (2011). Int. Res. J. Pharm. 2, 257–261.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds