organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

{(3S,5R)-5-(2,4-Di­fluoro­phen­yl)-5-[(1H-1,2,4-triazol-1-yl)meth­yl]tetra­hydro­furan-3-yl}methyl 4-methyl­benzene­sulfonate

aShandong Jincheng Pharmaceutical Co. Ltd, No. 26, Kunxin Road, Zichuan District, Zibo 255130, People's Republic of China, and bCollege of Chemical Engineering, China University of Petroleum, Qingdao 266580, People's Republic of China
*Correspondence e-mail: maqingshuang@163.com

Edited by J. Simpson, University of Otago, New Zealand (Received 20 January 2017; accepted 13 February 2017; online 17 February 2017)

In the title compound, C21H21F2N3O4S, the tetra­hydro­furan ring adopts an envelope conformation with the β-C atom positioned at the flap. The triazole, di­fluoro­phenyl and tolyl rings of the various substituents on the tetra­hydro­furan ring are inclined at 77.88 (12), 83.81 (10) and 81.00 (10)°, respectively, to the best-fit mean plane through the five atoms of the tetra­hydro­furan ring. In the crystal, weak C—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules into a three-dimensional structure, with mol­ecules stacked along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Derivatives of triazole exhibit a broad spectrum of pharmaceutical applications, particularly as anti­fungal agents (Sheehan et al., 1999[Sheehan, D. J., Hitchcock, C. A. & Sibley, C. M. (1999). Clin. Microbiol. Rev. 12, 40-79.]). The title compound is a key inter­mediate in the synthesis of the anti­fungal agent Posaconazole. Compared with the existing anti­fungal drugs, it has a higher potency against a broad range of fungal pathogens including Asperigillus, Candida and Cryptococcus (Oakley et al., 1997[Oakley, K. L., Moore, C. B. & Denning, D. W. (1997). Antimicrob. Agents Chemother. 41, 1124-1126.]; Koltin & Hitchcock, 1997[Koltin, Y. & Hitchcock, C. A. (1997). Curr. Opin. Chem. Biol. 1, 176-182.]). We report herein the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

The mol­ecule contains a central tetra­hydro­furan ring with a 2–4-di­fluoro­phenyl ring in an R-configuration and a methyl 1,2,4-triazole substituent at C8 with a methyl 4-methyl­benzene­sulfonate substituent in an S-configuration at C10. The tetra­hydro­furan ring O1/C8–C11 adopts an envelope conformation with the C9 atom at the flap. The best-fit mean plane through atoms O1,C8–C11 of the tetra­hydro­furan ring is inclined at 77.88 (12)° to the triazole ring, 83.81 (10)° to the di­fluoro­phenyl ring and 81.00 (10)° to the tolyl ring. The triazole ring is inclined at angles of 14.32 (7) and 17.73 (9)° to the tolyl and fluoro­benzene rings, respectively. The tolyl and fluoro­benzene rings are almost parallel, as indicated by the inter­planar angle of 3.89 (9)°. Bond lengths and angles in the mol­ecule are generally within the normal ranges and are similar to those observed in the related compounds N′-[(E)-(1S,3R)-(3-isopropyl-1-methyl-2-oxo­cyclo­pent­yl)methyl­idene]-4-methyl­benzene­sulfono­hydrazide (Tymann et al., 2015[Tymann, D., Dragon, D. C., Golz, C., Preut, H., Strohmann, C. & Hiersemann, M. (2015). Acta Cryst. E71, o904-o905.]) and 3-O-benzyl-4(R)-C-(1-benzyl-1H-1,2,3-triazol-4-yl)-1,2-O- iso­propyl­idene-α-D-erythro­furan­ose (Semjonovs et al., 2015[Semjonovs, N., Rjabovs, V., Stepanovs, D. & Turks, M. (2015). Acta Cryst. E71, 1542-1544.]).

In the crystal, weak C—H⋯O and C—H⋯F hydrogen bonds generate a three-dimensional structure, with mol­ecules stacked along the a-axis direction (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O3i 0.97 2.48 3.128 (3) 124
C14—H14⋯F1ii 0.93 2.60 3.222 (3) 125
C12—H12B⋯F2iii 0.97 2.54 3.492 (4) 168
Symmetry codes: (i) x+1, y, z; (ii) x, y, z-1; (iii) [-x+2, y-{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Packing of the title compound viewed along the a axis, with hydrogen bonds drawn as dashed lines.

Synthesis and crystallization

The title compound was prepared according to a literature procedure (Saksena et al., 1995[Saksena, A. K., Montclair, U. & Girijavallabhan, V. M. (1995). US Patent US5661151.]). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution at room temperature over a period of 10 d.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H21F2N3O4S
Mr 449.47
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 5.93718 (11), 16.9484 (3), 10.8841 (2)
β (°) 103.7973 (19)
V3) 1063.62 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.81
Crystal size (mm) 0.36 × 0.12 × 0.02
 
Data collection
Diffractometer Agilent Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.721, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11514, 3732, 3465
Rint 0.036
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.05
No. of reflections 3732
No. of parameters 281
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.16
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter −0.014 (16)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SUPERFLIP (Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]), SHELXL96 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL96 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

{(3S,5R)-5-(2,4-Difluorophenyl)-5-[(1H-1,2,4-triazol-1-yl)methyl]tetrahydrofuran-3-yl}methyl 4-methylbenzenesulfonate top
Crystal data top
C21H21F2N3O4SF(000) = 468
Mr = 449.47Dx = 1.403 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 5.93718 (11) ÅCell parameters from 5053 reflections
b = 16.9484 (3) Åθ = 4.2–72.3°
c = 10.8841 (2) ŵ = 1.81 mm1
β = 103.7973 (19)°T = 293 K
V = 1063.62 (3) Å3, colourless
Z = 20.36 × 0.12 × 0.02 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3732 independent reflections
Radiation source: Enhance (Cu) X-ray Source3465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.0355 pixels mm-1θmax = 66.6°, θmin = 4.2°
ω scansh = 57
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 2020
Tmin = 0.721, Tmax = 1.000l = 1211
11514 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.0885P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3732 reflectionsΔρmax = 0.18 e Å3
281 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983) ???? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.014 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56836 (9)0.48540 (3)0.07225 (5)0.04259 (14)
O20.7081 (2)0.48578 (12)0.21565 (13)0.0479 (4)
O40.6463 (4)0.54834 (10)0.00697 (17)0.0564 (5)
F10.8681 (3)0.51345 (9)0.72967 (13)0.0568 (4)
O11.4023 (2)0.51967 (10)0.52970 (13)0.0424 (4)
O30.3339 (3)0.48282 (15)0.08029 (18)0.0686 (5)
N11.3532 (3)0.36806 (11)0.65236 (18)0.0456 (5)
C41.1446 (4)0.58104 (14)0.64476 (18)0.0380 (5)
F20.9096 (5)0.78712 (12)0.7749 (2)0.1063 (8)
C130.6451 (4)0.39536 (13)0.01338 (19)0.0359 (5)
C140.8229 (4)0.39399 (13)0.0472 (2)0.0391 (5)
H140.90190.44000.05720.047*
N21.1927 (5)0.31089 (14)0.6471 (3)0.0650 (7)
C50.9697 (4)0.58272 (15)0.7095 (2)0.0446 (5)
C150.8825 (4)0.32311 (15)0.0929 (2)0.0490 (6)
H151.00310.32160.13390.059*
C10.9917 (6)0.71952 (18)0.7334 (3)0.0690 (8)
C91.0182 (3)0.47417 (13)0.48126 (17)0.0377 (4)
H9A1.03410.41810.46730.045*
H9B0.86750.48420.49820.045*
C101.0532 (4)0.52271 (13)0.36911 (18)0.0384 (5)
H100.98790.57560.37210.046*
C120.9601 (3)0.48732 (16)0.23982 (17)0.0415 (4)
H12A1.00790.51880.17610.050*
H12B1.01960.43420.23690.050*
C81.2160 (3)0.50486 (12)0.58950 (18)0.0370 (5)
C160.7658 (5)0.25394 (15)0.0789 (3)0.0571 (7)
C60.8899 (5)0.64998 (19)0.7559 (3)0.0608 (7)
H60.77360.64840.79990.073*
N31.4914 (6)0.26643 (17)0.5730 (3)0.0801 (8)
C21.1656 (6)0.72282 (16)0.6729 (3)0.0672 (8)
H21.23290.77090.66120.081*
C31.2428 (5)0.65347 (16)0.6283 (2)0.0513 (6)
H31.36240.65560.58670.062*
C71.3139 (4)0.44595 (14)0.6970 (2)0.0424 (5)
H7A1.45930.46630.74760.051*
H7B1.20650.44200.75130.051*
C170.5868 (6)0.25747 (16)0.0185 (3)0.0639 (8)
H170.50600.21170.00950.077*
C201.5278 (5)0.33992 (18)0.6096 (3)0.0618 (7)
H201.65950.36860.60600.074*
C180.5253 (5)0.32757 (17)0.0289 (3)0.0540 (6)
H180.40560.32920.07050.065*
C111.3187 (4)0.5280 (2)0.3973 (2)0.0583 (7)
H11A1.38000.48640.35340.070*
H11B1.36570.57850.36960.070*
C211.2873 (7)0.25194 (18)0.5978 (3)0.0777 (10)
H211.21490.20310.58130.093*
C190.8364 (7)0.1771 (2)0.1289 (4)0.0932 (12)
H19A0.92980.18770.18790.140*
H19B0.70030.14840.17060.140*
H19C0.92420.14630.05990.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0350 (2)0.0537 (3)0.0381 (2)0.0052 (3)0.00674 (19)0.0099 (3)
O20.0406 (7)0.0715 (10)0.0349 (7)0.0048 (9)0.0154 (6)0.0128 (8)
O40.0672 (12)0.0452 (9)0.0538 (10)0.0087 (8)0.0083 (9)0.0000 (8)
F10.0528 (8)0.0663 (9)0.0574 (8)0.0105 (7)0.0253 (7)0.0048 (7)
O10.0333 (7)0.0616 (9)0.0329 (7)0.0049 (7)0.0089 (6)0.0048 (7)
O30.0390 (8)0.0927 (14)0.0737 (11)0.0054 (11)0.0124 (8)0.0275 (12)
N10.0479 (11)0.0454 (11)0.0422 (10)0.0014 (9)0.0081 (9)0.0089 (8)
C40.0367 (11)0.0465 (11)0.0277 (9)0.0045 (9)0.0016 (8)0.0009 (8)
F20.1321 (19)0.0673 (12)0.1169 (17)0.0173 (12)0.0245 (15)0.0368 (12)
C130.0339 (11)0.0440 (12)0.0290 (10)0.0007 (9)0.0061 (9)0.0039 (8)
C140.0409 (12)0.0445 (12)0.0324 (10)0.0029 (9)0.0099 (9)0.0023 (9)
N20.0620 (14)0.0535 (14)0.0801 (17)0.0121 (11)0.0181 (13)0.0101 (12)
C50.0443 (12)0.0539 (13)0.0349 (11)0.0048 (11)0.0078 (10)0.0001 (10)
C150.0506 (14)0.0571 (14)0.0425 (12)0.0079 (11)0.0173 (11)0.0059 (11)
C10.083 (2)0.0554 (16)0.0629 (17)0.0069 (15)0.0050 (16)0.0179 (14)
C90.0378 (10)0.0426 (12)0.0314 (9)0.0059 (9)0.0059 (8)0.0014 (9)
C100.0428 (12)0.0413 (10)0.0291 (10)0.0003 (9)0.0047 (8)0.0009 (8)
C120.0384 (10)0.0553 (12)0.0327 (9)0.0041 (12)0.0118 (8)0.0017 (11)
C80.0358 (10)0.0453 (12)0.0298 (9)0.0050 (8)0.0073 (8)0.0023 (8)
C160.0651 (17)0.0480 (14)0.0524 (14)0.0021 (12)0.0027 (13)0.0085 (11)
C60.0591 (16)0.0776 (18)0.0459 (13)0.0092 (14)0.0134 (12)0.0115 (13)
N30.093 (2)0.0677 (17)0.0816 (19)0.0115 (15)0.0242 (16)0.0104 (14)
C20.082 (2)0.0445 (14)0.0690 (18)0.0134 (14)0.0069 (16)0.0077 (13)
C30.0539 (15)0.0528 (14)0.0453 (12)0.0129 (12)0.0083 (11)0.0014 (11)
C70.0446 (13)0.0501 (12)0.0316 (10)0.0009 (10)0.0071 (9)0.0039 (9)
C170.0707 (18)0.0439 (14)0.0751 (18)0.0189 (13)0.0135 (16)0.0022 (13)
C200.0589 (16)0.0664 (17)0.0645 (17)0.0030 (13)0.0230 (14)0.0023 (14)
C180.0477 (14)0.0624 (15)0.0550 (15)0.0129 (12)0.0184 (12)0.0025 (12)
C110.0455 (14)0.094 (2)0.0359 (11)0.0173 (14)0.0116 (10)0.0086 (12)
C210.095 (3)0.0499 (16)0.081 (2)0.0096 (16)0.006 (2)0.0034 (15)
C190.121 (3)0.0553 (19)0.099 (3)0.0145 (19)0.017 (2)0.0234 (18)
Geometric parameters (Å, º) top
S1—O21.5832 (14)C9—C81.542 (3)
S1—O41.419 (2)C10—H100.9800
S1—O31.4159 (18)C10—C121.508 (3)
S1—C131.757 (2)C10—C111.535 (3)
O2—C121.456 (2)C12—H12A0.9700
F1—C51.362 (3)C12—H12B0.9700
O1—C81.433 (3)C8—C71.542 (3)
O1—C111.414 (3)C16—C171.378 (4)
N1—N21.351 (3)C16—C191.509 (4)
N1—C71.445 (3)C6—H60.9300
N1—C201.322 (4)N3—C201.310 (4)
C4—C51.388 (3)N3—C211.326 (5)
C4—C81.526 (3)C2—H20.9300
C4—C31.389 (3)C2—C31.390 (4)
F2—C11.363 (3)C3—H30.9300
C13—C141.372 (3)C7—H7A0.9700
C13—C181.382 (3)C7—H7B0.9700
C14—H140.9300C17—H170.9300
C14—C151.378 (3)C17—C181.378 (4)
N2—C211.322 (4)C20—H200.9300
C5—C61.376 (4)C18—H180.9300
C15—H150.9300C11—H11A0.9700
C15—C161.389 (4)C11—H11B0.9700
C1—C61.373 (5)C21—H210.9300
C1—C21.352 (5)C19—H19A0.9600
C9—H9A0.9700C19—H19B0.9600
C9—H9B0.9700C19—H19C0.9600
C9—C101.527 (3)
O2—S1—C13104.04 (10)O1—C8—C9104.00 (15)
O4—S1—O2109.50 (11)O1—C8—C7105.41 (16)
O4—S1—C13109.05 (11)C4—C8—C9110.73 (17)
O3—S1—O2103.35 (10)C4—C8—C7109.78 (17)
O3—S1—O4119.81 (13)C9—C8—C7116.22 (18)
O3—S1—C13109.87 (12)C15—C16—C19120.0 (3)
C12—O2—S1116.90 (11)C17—C16—C15118.5 (2)
C11—O1—C8111.00 (16)C17—C16—C19121.5 (3)
N2—N1—C7120.0 (2)C5—C6—H6121.9
C20—N1—N2109.3 (2)C1—C6—C5116.2 (3)
C20—N1—C7130.6 (2)C1—C6—H6121.9
C5—C4—C8122.0 (2)C20—N3—C21101.9 (3)
C5—C4—C3115.8 (2)C1—C2—H2120.4
C3—C4—C8122.2 (2)C1—C2—C3119.3 (3)
C14—C13—S1119.09 (17)C3—C2—H2120.4
C14—C13—C18121.5 (2)C4—C3—C2121.3 (3)
C18—C13—S1119.45 (18)C4—C3—H3119.4
C13—C14—H14120.6C2—C3—H3119.4
C13—C14—C15118.8 (2)N1—C7—C8113.47 (18)
C15—C14—H14120.6N1—C7—H7A108.9
C21—N2—N1101.2 (3)N1—C7—H7B108.9
F1—C5—C4118.6 (2)C8—C7—H7A108.9
F1—C5—C6116.8 (2)C8—C7—H7B108.9
C6—C5—C4124.6 (3)H7A—C7—H7B107.7
C14—C15—H15119.4C16—C17—H17119.4
C14—C15—C16121.2 (2)C16—C17—C18121.3 (2)
C16—C15—H15119.4C18—C17—H17119.4
F2—C1—C6117.1 (3)N1—C20—H20124.3
C2—C1—F2120.1 (3)N3—C20—N1111.3 (3)
C2—C1—C6122.8 (3)N3—C20—H20124.3
H9A—C9—H9B109.3C13—C18—H18120.6
C10—C9—H9A111.4C17—C18—C13118.7 (2)
C10—C9—H9B111.4C17—C18—H18120.6
C10—C9—C8101.83 (16)O1—C11—C10107.01 (18)
C8—C9—H9A111.4O1—C11—H11A110.3
C8—C9—H9B111.4O1—C11—H11B110.3
C9—C10—H10109.6C10—C11—H11A110.3
C9—C10—C11101.56 (17)C10—C11—H11B110.3
C12—C10—C9116.25 (19)H11A—C11—H11B108.6
C12—C10—H10109.6N2—C21—N3116.1 (3)
C12—C10—C11109.89 (19)N2—C21—H21121.9
C11—C10—H10109.6N3—C21—H21121.9
O2—C12—C10107.92 (16)C16—C19—H19A109.5
O2—C12—H12A110.1C16—C19—H19B109.5
O2—C12—H12B110.1C16—C19—H19C109.5
C10—C12—H12A110.1H19A—C19—H19B109.5
C10—C12—H12B110.1H19A—C19—H19C109.5
H12A—C12—H12B108.4H19B—C19—H19C109.5
O1—C8—C4110.35 (17)
S1—O2—C12—C10155.39 (17)C9—C10—C11—O125.6 (3)
S1—C13—C14—C15179.88 (17)C9—C8—C7—N144.5 (3)
S1—C13—C18—C17179.6 (2)C10—C9—C8—O135.4 (2)
O2—S1—C13—C1494.97 (18)C10—C9—C8—C483.1 (2)
O2—S1—C13—C1885.1 (2)C10—C9—C8—C7150.75 (19)
O4—S1—O2—C1252.0 (2)C12—C10—C11—O1149.2 (2)
O4—S1—C13—C1421.8 (2)C8—O1—C11—C103.4 (3)
O4—S1—C13—C18158.2 (2)C8—C4—C5—F13.5 (3)
F1—C5—C6—C1179.2 (2)C8—C4—C5—C6176.6 (2)
O1—C8—C7—N170.0 (2)C8—C4—C3—C2176.1 (2)
O3—S1—O2—C12179.3 (2)C8—C9—C10—C12155.55 (19)
O3—S1—C13—C14154.94 (18)C8—C9—C10—C1136.3 (2)
O3—S1—C13—C1825.0 (2)C16—C17—C18—C130.8 (4)
N1—N2—C21—N30.7 (4)C6—C1—C2—C31.5 (5)
C4—C5—C6—C11.0 (4)C2—C1—C6—C52.0 (5)
C4—C8—C7—N1171.16 (18)C3—C4—C5—F1179.39 (19)
F2—C1—C6—C5177.8 (2)C3—C4—C5—C60.5 (3)
F2—C1—C2—C3178.3 (3)C3—C4—C8—O14.0 (3)
C13—S1—O2—C1264.5 (2)C3—C4—C8—C9110.6 (2)
C13—C14—C15—C160.2 (4)C3—C4—C8—C7119.8 (2)
C14—C13—C18—C170.3 (4)C7—N1—N2—C21177.5 (2)
C14—C15—C16—C170.3 (4)C7—N1—C20—N3177.1 (2)
C14—C15—C16—C19179.4 (3)C20—N1—N2—C211.1 (3)
N2—N1—C7—C897.1 (3)C20—N1—C7—C881.1 (3)
N2—N1—C20—N31.2 (3)C20—N3—C21—N20.0 (4)
C5—C4—C8—O1179.07 (17)C18—C13—C14—C150.2 (3)
C5—C4—C8—C966.3 (2)C11—O1—C8—C498.5 (2)
C5—C4—C8—C763.3 (2)C11—O1—C8—C920.3 (2)
C5—C4—C3—C21.0 (3)C11—O1—C8—C7143.0 (2)
C15—C16—C17—C180.8 (4)C11—C10—C12—O2178.2 (2)
C1—C2—C3—C40.0 (4)C21—N3—C20—N10.8 (4)
C9—C10—C12—O267.2 (3)C19—C16—C17—C18178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O3i0.972.483.128 (3)124
C14—H14···F1ii0.932.603.222 (3)125
C12—H12B···F2iii0.972.543.492 (4)168
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+2, y1/2, z+1.
 

Acknowledgements

The authors thank Professor Chen for providing the single-crystal X-ray diffractometer facility.

Funding information

Funding for this research was provided by: Shandong Jincheng Pharmaceutical Co. Ltd

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKoltin, Y. & Hitchcock, C. A. (1997). Curr. Opin. Chem. Biol. 1, 176–182.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOakley, K. L., Moore, C. B. & Denning, D. W. (1997). Antimicrob. Agents Chemother. 41, 1124–1126.  CAS Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaksena, A. K., Montclair, U. & Girijavallabhan, V. M. (1995). US Patent US5661151.  Google Scholar
First citationSemjonovs, N., Rjabovs, V., Stepanovs, D. & Turks, M. (2015). Acta Cryst. E71, 1542–1544.  CSD CrossRef IUCr Journals Google Scholar
First citationSheehan, D. J., Hitchcock, C. A. & Sibley, C. M. (1999). Clin. Microbiol. Rev. 12, 40–79.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTymann, D., Dragon, D. C., Golz, C., Preut, H., Strohmann, C. & Hiersemann, M. (2015). Acta Cryst. E71, o904–o905.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds