organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Methyl­benzo[d][2,1,3]selena­diazole

aEquipe de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, 40001 Marrakech, Morocco, and bLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: elfirdoussi@uca.ma

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 7 February 2017; accepted 10 February 2017; online 17 February 2017)

In the crystal of the title compound, C7H6N2Se, the mol­ecules are arranged in rods along the b-axis direction and form dimeric units due to inter­molecular Se⋯N contacts of 2.982 (2) Å. The mol­ecules are further linked by weak ππ stacking inter­actions between the 2,1,3-selena­diazole and six-membered aromatic rings [centroid–centroid distance = 3.8509 (11) Å and ring slippage = 1.539 (3) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Organoselenium compounds are commonly found to be efficient catalysts in a variety of organic reactions, for example, the allylic chlorination of terpenic olefins (Boualy et al., 2016[Boualy, B., El Hossame, S., Sancineto, L., Santi, C., Ait Ali, M., El Firdoussi, L. & Stoeckli-Evans, H. (2016). New J. Chem. 40, 3395-3399.]). Various seleno­heterocyclic compounds are widely employed as ligands in asymmetric syntheses (Zhou et al., 2005[Zhou, A., Zheng, S., Fang, Y. & Tong, M. (2005). Inorg. Chem. 44, 4457-4459.]). They are also used as structure motifs in bioactive mol­ecules, such as anti­oxidants, anti-inflammatory agents, cytokine inducers, enzyme inhibitors, anti­tumor and anti­cancer agents (Mlochowski et al., 2007[Mlochowski, J., Kloc, K., Lisiak, R., Potaczek, P. & Wojtowicz, H. (2007). Arkivoc, 6, 14-46.]; Mugesh et al., 2001[Mugesh, G., Du Mont, W. & Seis, H. (2001). Chem. Rev. 101, 2125-2179.]; Osajda et al., 2001[Osajda, M., Kloc, K., Mlochowski, J., Plassecki, E. & Rybka, K. (2001). Pol. J. Chem. 75, 823-830.]).

The mol­ecule of the title compound (Fig. 1[link]) is almost planar [r.m.s. deviation for the non-H atoms = 0.008 Å; maximum deviation = 0.012 (2) Å for atom C5]. In the crystal, mol­ecules are arranged in rods along the b axis. As found for 4,5,6,7-tetra­methyl-2,1,3-benzoselena­diazole and their co-crystals, inter­molecular Se⋯N inter­actions are also observed (Eichstaedt et al., 2016[Eichstaedt, K., Wasilewska, A., Wicher, B., Gdaniec, M. & Połoński, T. (2016). Cryst. Growth Des. 16, 1282-1293.]), forming dimeric units. The Se⋯N distance in the title compound is 2.982 (2) Å. The dimers are further linked by weak ππ stacking inter­actions between the 2,1,3-selena­diazole and the six-membered aromatic rings [centroid–centroid distance = 3.8509 (11) Å and ring slippage = 1.539 (3) Å] (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing diagram of the title compound, showing Se⋯N contacts and ππ stacking inter­actions as dotted lines. Displacement ellipsoids are drawn at the 30% probability level. For clarity, H atoms have been omitted.

Synthesis and crystallization

4-Methyl-o-phenyl­enedi­amine (0.25 g, 2.04 mmol) and SeO2 (0.22 g, 1.96 mmol) were dissolved in 5 ml of N,N-di­methyl­formamide. After stirring for 24 h at room temperature, the reaction mixture was diluted with 30 ml of water and extracted three times with 20 ml of ethyl acetate. The organic phase was dried over MgSO4 and evaporated under vacuum. The pure product was isolated by column chromatography on silica gel using hexa­ne/ethyl acetate (90:10 v/v) as eluent (yield 81%). Colourless crystals were obtained by slow evaporation of a chloro­form solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were placed geometrically and refined using a riding-atom approximation, with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups.

Table 1
Experimental details

Crystal data
Chemical formula C7H6N2Se
Mr 197.10
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 10.2436 (8), 4.7669 (4), 14.1543 (11)
β (°) 96.6007 (16)
V3) 686.58 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.38
Crystal size (mm) 0.53 × 0.13 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.41, 0.66
No. of measured, independent and observed [I > 2σ(I)] reflections 9766, 1666, 1551
Rint 0.029
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.066, 1.05
No. of reflections 1666
No. of parameters 92
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.54
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

5-Methylbenzo[d][2,1,3]selenadiazole top
Crystal data top
C7H6N2SeF(000) = 384
Mr = 197.10Dx = 1.907 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.2436 (8) ÅCell parameters from 6123 reflections
b = 4.7669 (4) Åθ = 2.9–30.5°
c = 14.1543 (11) ŵ = 5.38 mm1
β = 96.6007 (16)°T = 150 K
V = 686.58 (10) Å3Needle, colourless
Z = 40.53 × 0.13 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
1666 independent reflections
Radiation source: fine-focus sealed tube1551 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.029
φ and ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1213
Tmin = 0.41, Tmax = 0.66k = 66
9766 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.3807P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1666 reflectionsΔρmax = 0.45 e Å3
92 parametersΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65487 (18)0.4128 (4)0.91555 (13)0.0175 (3)
C20.62888 (18)0.5312 (4)0.82258 (13)0.0201 (4)
H20.55330.47640.78150.024*
C30.71401 (19)0.7236 (4)0.79367 (13)0.0205 (4)
H30.69570.80330.73210.025*
C40.83091 (18)0.8116 (4)0.85274 (14)0.0181 (4)
C50.85896 (18)0.7016 (4)0.94160 (14)0.0196 (4)
H50.93630.75760.98060.024*
C60.77171 (18)0.5015 (4)0.97612 (13)0.0179 (4)
C70.91893 (19)1.0247 (4)0.81370 (14)0.0223 (4)
H7A0.88201.21270.81950.033*
H7B0.92560.98380.74660.033*
H7C1.00651.01630.84960.033*
N10.57862 (16)0.2254 (4)0.95243 (12)0.0206 (3)
N20.79010 (18)0.3861 (4)1.06228 (12)0.0228 (3)
Se10.65506 (2)0.15213 (4)1.07010 (2)0.02169 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0185 (8)0.0160 (8)0.0182 (8)0.0025 (7)0.0036 (7)0.0014 (7)
C20.0198 (9)0.0220 (9)0.0181 (8)0.0001 (7)0.0000 (7)0.0012 (7)
C30.0238 (9)0.0198 (9)0.0177 (8)0.0025 (7)0.0021 (7)0.0001 (7)
C40.0187 (9)0.0153 (8)0.0209 (9)0.0020 (6)0.0052 (7)0.0028 (7)
C50.0195 (9)0.0187 (9)0.0204 (9)0.0008 (7)0.0010 (7)0.0026 (7)
C60.0200 (8)0.0168 (9)0.0169 (8)0.0020 (6)0.0023 (6)0.0015 (6)
C70.0256 (9)0.0171 (9)0.0251 (9)0.0012 (7)0.0068 (7)0.0007 (7)
N10.0199 (8)0.0216 (8)0.0206 (8)0.0006 (6)0.0043 (6)0.0006 (6)
N20.0249 (9)0.0236 (8)0.0197 (8)0.0009 (6)0.0009 (6)0.0018 (6)
Se10.02535 (14)0.02166 (14)0.01885 (13)0.00117 (6)0.00588 (8)0.00329 (6)
Geometric parameters (Å, º) top
C1—N11.332 (3)C5—C61.431 (3)
C1—C21.429 (3)C5—H50.9500
C1—C61.453 (3)C6—N21.331 (2)
C2—C31.361 (3)C7—H7A0.9800
C2—H20.9500C7—H7B0.9800
C3—C41.442 (3)C7—H7C0.9800
C3—H30.9500N1—Se11.7916 (17)
C4—C51.363 (3)N2—Se11.7902 (18)
C4—C71.505 (3)
N1—C1—C2124.78 (18)C6—C5—H5120.1
N1—C1—C6116.39 (17)N2—C6—C5124.06 (17)
C2—C1—C6118.83 (17)N2—C6—C1116.14 (17)
C3—C2—C1119.04 (18)C5—C6—C1119.80 (17)
C3—C2—H2120.5C4—C7—H7A109.5
C1—C2—H2120.5C4—C7—H7B109.5
C2—C3—C4122.69 (18)H7A—C7—H7B109.5
C2—C3—H3118.7C4—C7—H7C109.5
C4—C3—H3118.7H7A—C7—H7C109.5
C5—C4—C3119.75 (18)H7B—C7—H7C109.5
C5—C4—C7121.81 (18)C1—N1—Se1106.37 (13)
C3—C4—C7118.44 (17)C6—N2—Se1106.57 (13)
C4—C5—C6119.87 (18)N2—Se1—N194.54 (8)
C4—C5—H5120.1
N1—C1—C2—C3179.25 (18)C2—C1—C6—N2179.36 (17)
C6—C1—C2—C30.1 (3)N1—C1—C6—C5179.78 (17)
C1—C2—C3—C40.7 (3)C2—C1—C6—C50.8 (3)
C2—C3—C4—C50.4 (3)C2—C1—N1—Se1179.30 (15)
C2—C3—C4—C7179.66 (18)C6—C1—N1—Se10.1 (2)
C3—C4—C5—C60.6 (3)C5—C6—N2—Se1179.85 (15)
C7—C4—C5—C6179.39 (17)C1—C6—N2—Se10.0 (2)
C4—C5—C6—N2179.01 (18)C6—N2—Se1—N10.04 (14)
C4—C5—C6—C11.1 (3)C1—N1—Se1—N20.09 (14)
N1—C1—C6—N20.1 (3)
 

References

First citationBoualy, B., El Hossame, S., Sancineto, L., Santi, C., Ait Ali, M., El Firdoussi, L. & Stoeckli-Evans, H. (2016). New J. Chem. 40, 3395–3399.  CSD CrossRef CAS Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEichstaedt, K., Wasilewska, A., Wicher, B., Gdaniec, M. & Połoński, T. (2016). Cryst. Growth Des. 16, 1282–1293.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMlochowski, J., Kloc, K., Lisiak, R., Potaczek, P. & Wojtowicz, H. (2007). Arkivoc, 6, 14–46.  Google Scholar
First citationMugesh, G., Du Mont, W. & Seis, H. (2001). Chem. Rev. 101, 2125–2179.  CrossRef CAS Google Scholar
First citationOsajda, M., Kloc, K., Mlochowski, J., Plassecki, E. & Rybka, K. (2001). Pol. J. Chem. 75, 823–830.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, A., Zheng, S., Fang, Y. & Tong, M. (2005). Inorg. Chem. 44, 4457–4459.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds