organic compounds
5-Methylbenzo[d][2,1,3]selenadiazole
aEquipe de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, 40001 Marrakech, Morocco, and bLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: elfirdoussi@uca.ma
In the crystal of the title compound, C7H6N2Se, the molecules are arranged in rods along the b-axis direction and form dimeric units due to intermolecular Se⋯N contacts of 2.982 (2) Å. The molecules are further linked by weak π–π stacking interactions between the 2,1,3-selenadiazole and six-membered aromatic rings [centroid–centroid distance = 3.8509 (11) Å and ring slippage = 1.539 (3) Å].
Keywords: crystal structure; selenadiazole; Se⋯N contacts; π–π interactions.
CCDC reference: 1532046
Structure description
Organoselenium compounds are commonly found to be efficient catalysts in a variety of organic reactions, for example, the allylic chlorination of terpenic et al., 2016). Various selenoheterocyclic compounds are widely employed as ligands in asymmetric syntheses (Zhou et al., 2005). They are also used as structure motifs in bioactive molecules, such as antioxidants, anti-inflammatory agents, cytokine inducers, enzyme inhibitors, antitumor and anticancer agents (Mlochowski et al., 2007; Mugesh et al., 2001; Osajda et al., 2001).
(BoualyThe molecule of the title compound (Fig. 1) is almost planar [r.m.s. deviation for the non-H atoms = 0.008 Å; maximum deviation = 0.012 (2) Å for atom C5]. In the crystal, molecules are arranged in rods along the b axis. As found for 4,5,6,7-tetramethyl-2,1,3-benzoselenadiazole and their co-crystals, intermolecular Se⋯N interactions are also observed (Eichstaedt et al., 2016), forming dimeric units. The Se⋯N distance in the title compound is 2.982 (2) Å. The dimers are further linked by weak π–π stacking interactions between the 2,1,3-selenadiazole and the six-membered aromatic rings [centroid–centroid distance = 3.8509 (11) Å and ring slippage = 1.539 (3) Å] (Fig. 2).
Synthesis and crystallization
4-Methyl-o-phenylenediamine (0.25 g, 2.04 mmol) and SeO2 (0.22 g, 1.96 mmol) were dissolved in 5 ml of N,N-dimethylformamide. After stirring for 24 h at room temperature, the reaction mixture was diluted with 30 ml of water and extracted three times with 20 ml of ethyl acetate. The organic phase was dried over MgSO4 and evaporated under vacuum. The pure product was isolated by on silica gel using hexane/ethyl acetate (90:10 v/v) as (yield 81%). Colourless crystals were obtained by slow evaporation of a chloroform solution.
Refinement
Crystal data, data collection and structure . All H atoms were placed geometrically and refined using a riding-atom approximation, with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups.
details are summarized in Table 1Structural data
CCDC reference: 1532046
https://doi.org/10.1107/S2414314617002267/rz4011sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617002267/rz4011Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617002267/rz4011Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C7H6N2Se | F(000) = 384 |
Mr = 197.10 | Dx = 1.907 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2436 (8) Å | Cell parameters from 6123 reflections |
b = 4.7669 (4) Å | θ = 2.9–30.5° |
c = 14.1543 (11) Å | µ = 5.38 mm−1 |
β = 96.6007 (16)° | T = 150 K |
V = 686.58 (10) Å3 | Needle, colourless |
Z = 4 | 0.53 × 0.13 × 0.08 mm |
Bruker APEXII CCD diffractometer | 1666 independent reflections |
Radiation source: fine-focus sealed tube | 1551 reflections with I > 2σ(I) |
Detector resolution: 8.3333 pixels mm-1 | Rint = 0.029 |
φ and ω scans | θmax = 28.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −12→13 |
Tmin = 0.41, Tmax = 0.66 | k = −6→6 |
9766 measured reflections | l = −18→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.066 | w = 1/[σ2(Fo2) + (0.0423P)2 + 0.3807P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
1666 reflections | Δρmax = 0.45 e Å−3 |
92 parameters | Δρmin = −0.54 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.65487 (18) | 0.4128 (4) | 0.91555 (13) | 0.0175 (3) | |
C2 | 0.62888 (18) | 0.5312 (4) | 0.82258 (13) | 0.0201 (4) | |
H2 | 0.5533 | 0.4764 | 0.7815 | 0.024* | |
C3 | 0.71401 (19) | 0.7236 (4) | 0.79367 (13) | 0.0205 (4) | |
H3 | 0.6957 | 0.8033 | 0.7321 | 0.025* | |
C4 | 0.83091 (18) | 0.8116 (4) | 0.85274 (14) | 0.0181 (4) | |
C5 | 0.85896 (18) | 0.7016 (4) | 0.94160 (14) | 0.0196 (4) | |
H5 | 0.9363 | 0.7576 | 0.9806 | 0.024* | |
C6 | 0.77171 (18) | 0.5015 (4) | 0.97612 (13) | 0.0179 (4) | |
C7 | 0.91893 (19) | 1.0247 (4) | 0.81370 (14) | 0.0223 (4) | |
H7A | 0.8820 | 1.2127 | 0.8195 | 0.033* | |
H7B | 0.9256 | 0.9838 | 0.7466 | 0.033* | |
H7C | 1.0065 | 1.0163 | 0.8496 | 0.033* | |
N1 | 0.57862 (16) | 0.2254 (4) | 0.95243 (12) | 0.0206 (3) | |
N2 | 0.79010 (18) | 0.3861 (4) | 1.06228 (12) | 0.0228 (3) | |
Se1 | 0.65506 (2) | 0.15213 (4) | 1.07010 (2) | 0.02169 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0185 (8) | 0.0160 (8) | 0.0182 (8) | 0.0025 (7) | 0.0036 (7) | −0.0014 (7) |
C2 | 0.0198 (9) | 0.0220 (9) | 0.0181 (8) | −0.0001 (7) | 0.0000 (7) | −0.0012 (7) |
C3 | 0.0238 (9) | 0.0198 (9) | 0.0177 (8) | 0.0025 (7) | 0.0021 (7) | −0.0001 (7) |
C4 | 0.0187 (9) | 0.0153 (8) | 0.0209 (9) | 0.0020 (6) | 0.0052 (7) | −0.0028 (7) |
C5 | 0.0195 (9) | 0.0187 (9) | 0.0204 (9) | −0.0008 (7) | 0.0010 (7) | −0.0026 (7) |
C6 | 0.0200 (8) | 0.0168 (9) | 0.0169 (8) | 0.0020 (6) | 0.0023 (6) | −0.0015 (6) |
C7 | 0.0256 (9) | 0.0171 (9) | 0.0251 (9) | −0.0012 (7) | 0.0068 (7) | −0.0007 (7) |
N1 | 0.0199 (8) | 0.0216 (8) | 0.0206 (8) | 0.0006 (6) | 0.0043 (6) | −0.0006 (6) |
N2 | 0.0249 (9) | 0.0236 (8) | 0.0197 (8) | −0.0009 (6) | 0.0009 (6) | 0.0018 (6) |
Se1 | 0.02535 (14) | 0.02166 (14) | 0.01885 (13) | 0.00117 (6) | 0.00588 (8) | 0.00329 (6) |
C1—N1 | 1.332 (3) | C5—C6 | 1.431 (3) |
C1—C2 | 1.429 (3) | C5—H5 | 0.9500 |
C1—C6 | 1.453 (3) | C6—N2 | 1.331 (2) |
C2—C3 | 1.361 (3) | C7—H7A | 0.9800 |
C2—H2 | 0.9500 | C7—H7B | 0.9800 |
C3—C4 | 1.442 (3) | C7—H7C | 0.9800 |
C3—H3 | 0.9500 | N1—Se1 | 1.7916 (17) |
C4—C5 | 1.363 (3) | N2—Se1 | 1.7902 (18) |
C4—C7 | 1.505 (3) | ||
N1—C1—C2 | 124.78 (18) | C6—C5—H5 | 120.1 |
N1—C1—C6 | 116.39 (17) | N2—C6—C5 | 124.06 (17) |
C2—C1—C6 | 118.83 (17) | N2—C6—C1 | 116.14 (17) |
C3—C2—C1 | 119.04 (18) | C5—C6—C1 | 119.80 (17) |
C3—C2—H2 | 120.5 | C4—C7—H7A | 109.5 |
C1—C2—H2 | 120.5 | C4—C7—H7B | 109.5 |
C2—C3—C4 | 122.69 (18) | H7A—C7—H7B | 109.5 |
C2—C3—H3 | 118.7 | C4—C7—H7C | 109.5 |
C4—C3—H3 | 118.7 | H7A—C7—H7C | 109.5 |
C5—C4—C3 | 119.75 (18) | H7B—C7—H7C | 109.5 |
C5—C4—C7 | 121.81 (18) | C1—N1—Se1 | 106.37 (13) |
C3—C4—C7 | 118.44 (17) | C6—N2—Se1 | 106.57 (13) |
C4—C5—C6 | 119.87 (18) | N2—Se1—N1 | 94.54 (8) |
C4—C5—H5 | 120.1 | ||
N1—C1—C2—C3 | 179.25 (18) | C2—C1—C6—N2 | 179.36 (17) |
C6—C1—C2—C3 | −0.1 (3) | N1—C1—C6—C5 | 179.78 (17) |
C1—C2—C3—C4 | 0.7 (3) | C2—C1—C6—C5 | −0.8 (3) |
C2—C3—C4—C5 | −0.4 (3) | C2—C1—N1—Se1 | −179.30 (15) |
C2—C3—C4—C7 | 179.66 (18) | C6—C1—N1—Se1 | 0.1 (2) |
C3—C4—C5—C6 | −0.6 (3) | C5—C6—N2—Se1 | −179.85 (15) |
C7—C4—C5—C6 | 179.39 (17) | C1—C6—N2—Se1 | 0.0 (2) |
C4—C5—C6—N2 | −179.01 (18) | C6—N2—Se1—N1 | 0.04 (14) |
C4—C5—C6—C1 | 1.1 (3) | C1—N1—Se1—N2 | −0.09 (14) |
N1—C1—C6—N2 | −0.1 (3) |
References
Boualy, B., El Hossame, S., Sancineto, L., Santi, C., Ait Ali, M., El Firdoussi, L. & Stoeckli-Evans, H. (2016). New J. Chem. 40, 3395–3399. CSD CrossRef CAS Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Eichstaedt, K., Wasilewska, A., Wicher, B., Gdaniec, M. & Połoński, T. (2016). Cryst. Growth Des. 16, 1282–1293. CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mlochowski, J., Kloc, K., Lisiak, R., Potaczek, P. & Wojtowicz, H. (2007). Arkivoc, 6, 14–46. Google Scholar
Mugesh, G., Du Mont, W. & Seis, H. (2001). Chem. Rev. 101, 2125–2179. CrossRef CAS Google Scholar
Osajda, M., Kloc, K., Mlochowski, J., Plassecki, E. & Rybka, K. (2001). Pol. J. Chem. 75, 823–830. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhou, A., Zheng, S., Fang, Y. & Tong, M. (2005). Inorg. Chem. 44, 4457–4459. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.