organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[(1R,2S,4R,7S)-3,3-Di­chloro-4,11,11-tri­methyl­tri­cyclo[5.4.0.02,4]undecan-7-yl]ethanone

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie des Substances Naturelles, `Unité Associé au CNRST (URAC16)', Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014 Rabat, Morocco
*Correspondence e-mail: benharref@uca.ac.ma

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 23 January 2017; accepted 7 February 2017; online 14 February 2017)

The title compound, C16H24Cl2O, crystallizes with two independent mol­ecules in the asymmetric unit. Each mol­ecule is built up from two fused six-membered rings, one of which is fused to a three-membered ring. The two mol­ecules differ essentially in the orientation of two of the methyl groups. The dihedral angles between the mean planes through the two six-membered rings are 57.98 (13) and 55.29 (13)°. The mol­ecular conformation is stabilized by intra­molecular C—H⋯Cl hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The bicyclic sesquiterpene β-himachalene is the main constituent of the essential oil of the Atlas cedar (Cedrus atlantica) (El Haib et al., 2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]). The reactivity of this sesquiterpene (and its derivatives) has been studied extensively by our team in order to prepare new products having biological properties (El Jamili et al., 2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]; Benharref et al., 2013[Benharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933-o934.], 2015[Benharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659-o660.], 2016[Benharref, A., Oukhrib, A., Ait Elhad, M., ElAmmari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.]; Zaki et al., 2014[Zaki, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o444.]). Indeed, these compounds were tested, using the food-poisoning technique, for their potential anti­fungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004[Daoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest. Manag. Sci. 60, 927-932.]). In this paper, we present the crystal structure of the title compound.

The asymmetric unit (Fig. 1[link]) includes two crystallographically independent mol­ecules (A and B). A least-squares overlay of the two mol­ecules (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) is shown in Fig. 2[link] and reveals that the most important difference between them is the relative orientation of the two acetonic methyl atoms C16 and C29. In both mol­ecules, one of the six-membered rings (C1–C6 and C17–C22) has a chair conformation, as indicated by the total puckering amplitude QT = 0.539 (3)/0.542 (3) Å and spherical polar angle θ2 = 178.2 (3)/175.3 (2)°, with φ2 = −42 (8)/−22 (4)°, whereas the other six-membered ring (C1/C6–C10 and C17/C22–C26) displays a boat conformation, with QT = 0.735 (3)/0.727 (4) Å, θ2 = 92.13 (18)/93.01 (18)° and φ2 = −0.6 (2)/63.6 (2)°. In addition, the dihedral angle between the least-squares mean planes through the two six-membered rings is 57.98 (13)° in mol­ecule A and 55.29 (13)° in mol­ecule B. Weak intra­molecular C—H⋯Cl interactions (Table 1[link]) stabilize the mol­ecular conformation. Owing to the presence of Cl atoms, the absolute configuration could be fully confirmed by refining the Flack parameter. The title compound is isostructural with the corresponding di­bromo derivative (Zaki et al., 2014[Zaki, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o444.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1 0.98 2.64 3.227 (2) 118
C8—H8B⋯Cl1 0.97 2.61 3.184 (3) 118
C22—H22⋯Cl3 0.98 2.61 3.205 (2) 120
C25—H25B⋯Cl3 0.97 2.63 3.196 (3) 117
[Figure 1]
Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2]
Figure 2
AutoMolFit (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) of mol­ecule B (red) on mol­ecule A (white).

Synthesis and crystallization

BF3–Et2O (1 ml) was added dropwise to a solution of (1S,3R,8S)-2,2-di­chloro-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]dodec-9-ene (1 g, 3.3 mmol; Lassaba et al., 1997[Lassaba, E., Benharref, A., Giorgi, M. & Pierrot, M. (1997). Acta Cryst. C53, 1943-1945.]) in di­chloro­methane (60 ml) at 195 K under nitro­gen. The reaction mixture was stirred for 2 h at a constant temperature of 195 K and then left at ambient temperature for 24 h. Water (60 ml) was added in order to separate the two phases, and the organic phase was dried and concentrated. The residue obtained was chromatographed on silica gel, eluting with hexa­ne–ethyl acetate (97:3 v/v), which allowed the isolation of the title compound (yield: 34.7 mg, 1 mmol, 30%). Crystals suitable for X-ray analysis were obtained by slow evaporation from a hexane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were fixed geometrically and treated as riding, with C—H = 0.96 (meth­yl), 0.97 (methyl­ene) or 0.98 Å (methine), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. A rotating model was used for the methyl groups. Two outliers (011 and 101) were omitted in the final cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C16H24Cl2O
Mr 303.25
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 13.373 (3), 13.996 (3), 17.219 (4)
V3) 3222.9 (12)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.24 × 0.2 × 0.15
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])
Tmin, Tmax 0.679, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 42837, 6602, 6117
Rint 0.027
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.04
No. of reflections 6602
No. of parameters 351
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.15
Absolute structure Flack x determined using 2562 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.003 (11)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

1-[(1R,2S,4R,7S)-3,3-Dichloro-4,11,11-trimethyl­tricyclo[5.4.0.02,4]undecan-7-yl]ethanone top
Crystal data top
C16H24Cl2ODx = 1.250 Mg m3
Mr = 303.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6602 reflections
a = 13.373 (3) Åθ = 2.1–26.4°
b = 13.996 (3) ŵ = 0.39 mm1
c = 17.219 (4) ÅT = 296 K
V = 3222.9 (12) Å3Prismatic, colourless
Z = 80.24 × 0.2 × 0.15 mm
F(000) = 1296
Data collection top
Bruker X8 APEX
diffractometer
6117 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
φ and ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1616
Tmin = 0.679, Tmax = 0.747k = 1717
42837 measured reflectionsl = 2121
6602 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.5607P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6602 reflectionsΔρmax = 0.25 e Å3
351 parametersΔρmin = 0.15 e Å3
0 restraintsAbsolute structure: Flack x determined using 2562 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.36988 (6)0.29957 (5)0.55069 (4)0.05611 (18)
Cl30.95794 (5)0.53104 (6)0.79873 (4)0.0617 (2)
Cl20.17235 (7)0.21684 (5)0.54209 (6)0.0714 (2)
Cl40.98018 (6)0.32934 (6)0.76753 (6)0.0755 (3)
O20.3205 (2)0.73129 (15)0.45534 (15)0.0799 (7)
C10.25547 (17)0.50152 (15)0.53392 (11)0.0317 (4)
H10.32490.48340.54470.038*
C220.72518 (16)0.49498 (15)0.76550 (12)0.0340 (4)
H220.76460.54870.78530.041*
C100.19975 (17)0.41104 (16)0.51128 (13)0.0356 (5)
H100.12780.41170.52210.043*
C90.22970 (19)0.36088 (17)0.43609 (14)0.0400 (5)
C230.79869 (17)0.42024 (16)0.73703 (13)0.0370 (5)
H230.77470.35410.73870.044*
C170.66252 (17)0.53344 (17)0.69536 (13)0.0401 (5)
C150.3382 (2)0.64824 (18)0.46980 (15)0.0505 (6)
C240.86437 (18)0.44530 (18)0.66748 (14)0.0418 (5)
C250.8422 (2)0.54421 (19)0.63672 (14)0.0463 (6)
H25A0.87890.55510.58890.056*
H25B0.86270.59200.67430.056*
C210.6619 (2)0.45593 (18)0.83496 (14)0.0446 (5)
O10.5301 (2)0.6488 (2)0.69931 (19)0.0942 (9)
C60.25692 (19)0.57096 (16)0.46278 (13)0.0390 (5)
C20.2116 (2)0.54496 (19)0.60989 (14)0.0451 (6)
C260.7303 (2)0.5520 (2)0.62175 (14)0.0484 (6)
H26A0.71220.50640.58170.058*
H26B0.71600.61540.60190.058*
C80.3150 (2)0.41262 (18)0.39601 (14)0.0454 (6)
H8A0.32800.38380.34580.054*
H8B0.37520.40800.42710.054*
C110.24772 (19)0.31444 (17)0.51377 (15)0.0424 (5)
C70.2858 (2)0.51667 (19)0.38574 (13)0.0486 (6)
H7A0.22950.51980.35030.058*
H7B0.34120.55010.36150.058*
C180.5816 (2)0.4601 (2)0.67344 (17)0.0559 (7)
H18A0.53740.48860.63520.067*
H18B0.61360.40550.64930.067*
C280.6174 (2)0.6318 (2)0.71223 (17)0.0552 (7)
C50.1527 (2)0.6152 (2)0.45342 (18)0.0587 (7)
H5A0.15580.66400.41350.070*
H5B0.10700.56610.43560.070*
C300.7319 (3)0.4090 (2)0.89434 (16)0.0613 (8)
H30A0.69370.38750.93820.092*
H30B0.78090.45460.91120.092*
H30C0.76490.35540.87080.092*
C270.90911 (19)0.43261 (19)0.74687 (15)0.0459 (6)
C160.4435 (2)0.6165 (3)0.4879 (2)0.0647 (8)
H16A0.49000.65420.45850.097*
H16B0.45110.55030.47440.097*
H16C0.45630.62470.54240.097*
C30.1089 (2)0.5890 (2)0.59315 (19)0.0625 (8)
H3A0.06200.53820.58100.075*
H3B0.08510.62110.63950.075*
C200.5847 (2)0.3842 (2)0.80557 (18)0.0570 (7)
H20A0.61910.32820.78590.068*
H20B0.54280.36420.84860.068*
C310.6090 (3)0.5389 (2)0.87730 (17)0.0615 (8)
H31A0.56440.57060.84200.092*
H31B0.65800.58360.89580.092*
H31C0.57160.51420.92050.092*
C130.2015 (3)0.4657 (3)0.67104 (15)0.0666 (9)
H13A0.26570.43710.68000.100*
H13B0.15570.41800.65270.100*
H13C0.17690.49260.71870.100*
C120.1507 (2)0.3210 (2)0.38231 (18)0.0618 (8)
H12A0.17730.26710.35480.093*
H12B0.13090.36930.34580.093*
H12C0.09370.30130.41220.093*
C320.8843 (2)0.3703 (2)0.60542 (17)0.0616 (8)
H0A0.94740.38320.58090.092*
H0B0.83200.37220.56730.092*
H0C0.88620.30810.62900.092*
C190.5189 (2)0.4252 (3)0.7417 (2)0.0694 (9)
H19A0.48010.47800.76230.083*
H19B0.47270.37650.72390.083*
C40.1105 (3)0.6595 (2)0.5268 (2)0.0705 (9)
H4A0.15080.71430.54130.085*
H4B0.04300.68180.51690.085*
C140.2817 (3)0.6214 (2)0.64349 (17)0.0617 (8)
H14A0.28820.67300.60710.093*
H14B0.34630.59390.65300.093*
H14C0.25450.64520.69130.093*
C290.6857 (3)0.7112 (2)0.7387 (2)0.0675 (8)
H29A0.65380.77170.73000.101*
H29B0.74710.70860.70980.101*
H29C0.69980.70380.79300.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0571 (4)0.0460 (3)0.0652 (4)0.0108 (3)0.0111 (3)0.0052 (3)
Cl30.0468 (4)0.0750 (5)0.0635 (4)0.0098 (3)0.0161 (3)0.0089 (4)
Cl20.0777 (5)0.0410 (3)0.0954 (6)0.0158 (3)0.0135 (4)0.0114 (4)
Cl40.0587 (5)0.0715 (5)0.0962 (6)0.0261 (4)0.0045 (4)0.0146 (4)
O20.113 (2)0.0382 (11)0.0888 (16)0.0112 (12)0.0047 (15)0.0144 (11)
C10.0328 (10)0.0319 (10)0.0303 (10)0.0008 (8)0.0021 (8)0.0004 (8)
C220.0348 (11)0.0313 (10)0.0360 (10)0.0029 (9)0.0018 (9)0.0012 (8)
C100.0332 (11)0.0340 (11)0.0397 (11)0.0009 (9)0.0043 (9)0.0009 (9)
C90.0428 (12)0.0357 (11)0.0415 (12)0.0006 (10)0.0013 (10)0.0064 (9)
C230.0362 (11)0.0341 (11)0.0408 (12)0.0001 (9)0.0013 (9)0.0010 (9)
C170.0354 (11)0.0423 (12)0.0425 (11)0.0003 (10)0.0047 (9)0.0001 (10)
C150.0699 (18)0.0381 (13)0.0435 (13)0.0105 (12)0.0003 (12)0.0036 (10)
C240.0366 (12)0.0450 (13)0.0438 (12)0.0013 (10)0.0018 (10)0.0038 (10)
C250.0473 (14)0.0528 (14)0.0387 (12)0.0057 (12)0.0050 (10)0.0057 (11)
C210.0492 (14)0.0403 (12)0.0443 (12)0.0044 (11)0.0091 (10)0.0006 (10)
O10.0635 (15)0.0844 (18)0.135 (2)0.0334 (14)0.0193 (16)0.0021 (17)
C60.0482 (13)0.0342 (11)0.0347 (11)0.0002 (10)0.0057 (10)0.0033 (9)
C20.0487 (14)0.0489 (14)0.0378 (12)0.0015 (12)0.0080 (10)0.0089 (10)
C260.0528 (15)0.0534 (15)0.0391 (12)0.0011 (12)0.0055 (11)0.0060 (11)
C80.0536 (15)0.0492 (14)0.0334 (11)0.0016 (12)0.0092 (10)0.0078 (10)
C110.0428 (13)0.0322 (11)0.0522 (13)0.0041 (10)0.0033 (10)0.0036 (10)
C70.0649 (16)0.0484 (14)0.0325 (11)0.0077 (13)0.0022 (11)0.0043 (10)
C180.0465 (14)0.0605 (17)0.0608 (16)0.0076 (13)0.0138 (12)0.0071 (14)
C280.0565 (16)0.0521 (15)0.0572 (15)0.0159 (13)0.0039 (13)0.0044 (12)
C50.0636 (18)0.0466 (14)0.0658 (17)0.0117 (13)0.0223 (14)0.0047 (13)
C300.079 (2)0.0618 (18)0.0433 (14)0.0028 (16)0.0049 (14)0.0144 (12)
C270.0382 (12)0.0465 (14)0.0530 (14)0.0041 (11)0.0052 (10)0.0002 (11)
C160.0553 (17)0.0665 (19)0.0724 (19)0.0230 (15)0.0036 (15)0.0022 (16)
C30.0478 (15)0.0632 (18)0.0764 (19)0.0103 (14)0.0148 (14)0.0240 (15)
C200.0551 (16)0.0506 (15)0.0652 (17)0.0151 (13)0.0176 (14)0.0010 (13)
C310.0688 (19)0.0599 (18)0.0558 (15)0.0006 (15)0.0206 (14)0.0106 (14)
C130.086 (2)0.077 (2)0.0370 (13)0.0027 (18)0.0186 (14)0.0001 (13)
C120.0664 (19)0.0543 (16)0.0646 (17)0.0038 (14)0.0169 (15)0.0172 (13)
C320.0594 (17)0.0658 (18)0.0597 (16)0.0008 (15)0.0126 (14)0.0160 (14)
C190.0435 (15)0.077 (2)0.087 (2)0.0209 (15)0.0014 (15)0.0084 (18)
C40.0552 (18)0.0583 (18)0.098 (2)0.0257 (15)0.0131 (17)0.0148 (17)
C140.0718 (19)0.0671 (18)0.0463 (14)0.0036 (16)0.0012 (14)0.0212 (13)
C290.092 (2)0.0382 (13)0.0719 (19)0.0098 (15)0.0013 (17)0.0010 (13)
Geometric parameters (Å, º) top
Cl1—C111.765 (3)C8—H8A0.9700
Cl3—C271.767 (3)C8—H8B0.9700
Cl2—C111.766 (2)C7—H7A0.9700
Cl4—C271.766 (3)C7—H7B0.9700
O2—C151.212 (3)C18—C191.524 (5)
C1—C101.520 (3)C18—H18A0.9700
C1—C21.557 (3)C18—H18B0.9700
C1—C61.564 (3)C28—C291.508 (5)
C1—H10.9800C5—C41.516 (5)
C22—C231.517 (3)C5—H5A0.9700
C22—C211.564 (3)C5—H5B0.9700
C22—C171.565 (3)C30—H30A0.9600
C22—H220.9800C30—H30B0.9600
C10—C111.497 (3)C30—H30C0.9600
C10—C91.526 (3)C16—H16A0.9600
C10—H100.9800C16—H16B0.9600
C9—C111.507 (3)C16—H16C0.9600
C9—C121.512 (4)C3—C41.510 (5)
C9—C81.517 (4)C3—H3A0.9700
C23—C271.496 (3)C3—H3B0.9700
C23—C241.526 (3)C20—C191.521 (5)
C23—H230.9800C20—H20A0.9700
C17—C281.531 (4)C20—H20B0.9700
C17—C181.538 (4)C31—H31A0.9600
C17—C261.580 (4)C31—H31B0.9600
C15—C161.508 (5)C31—H31C0.9600
C15—C61.539 (4)C13—H13A0.9600
C24—C271.503 (4)C13—H13B0.9600
C24—C251.512 (4)C13—H13C0.9600
C24—C321.522 (4)C12—H12A0.9600
C25—C261.522 (4)C12—H12B0.9600
C25—H25A0.9700C12—H12C0.9600
C25—H25B0.9700C32—H0A0.9600
C21—C201.526 (4)C32—H0B0.9600
C21—C301.534 (4)C32—H0C0.9600
C21—C311.543 (4)C19—H19A0.9700
O1—C281.213 (4)C19—H19B0.9700
C6—C51.534 (4)C4—H4A0.9700
C6—C71.577 (3)C4—H4B0.9700
C2—C31.533 (4)C14—H14A0.9600
C2—C131.535 (4)C14—H14B0.9600
C2—C141.536 (4)C14—H14C0.9600
C26—H26A0.9700C29—H29A0.9600
C26—H26B0.9700C29—H29B0.9600
C8—C71.518 (4)C29—H29C0.9600
C10—C1—C2110.86 (18)C19—C18—C17114.3 (2)
C10—C1—C6108.84 (17)C19—C18—H18A108.7
C2—C1—C6114.84 (18)C17—C18—H18A108.7
C10—C1—H1107.3C19—C18—H18B108.7
C2—C1—H1107.3C17—C18—H18B108.7
C6—C1—H1107.3H18A—C18—H18B107.6
C23—C22—C21110.91 (18)O1—C28—C29119.7 (3)
C23—C22—C17109.56 (18)O1—C28—C17121.4 (3)
C21—C22—C17114.86 (19)C29—C28—C17118.7 (2)
C23—C22—H22107.0C4—C5—C6114.6 (2)
C21—C22—H22107.0C4—C5—H5A108.6
C17—C22—H22107.0C6—C5—H5A108.6
C11—C10—C1122.34 (19)C4—C5—H5B108.6
C11—C10—C959.77 (16)C6—C5—H5B108.6
C1—C10—C9118.18 (19)H5A—C5—H5B107.6
C11—C10—H10115.1C21—C30—H30A109.5
C1—C10—H10115.1C21—C30—H30B109.5
C9—C10—H10115.1H30A—C30—H30B109.5
C11—C9—C12119.8 (2)C21—C30—H30C109.5
C11—C9—C8119.3 (2)H30A—C30—H30C109.5
C12—C9—C8115.0 (2)H30B—C30—H30C109.5
C11—C9—C1059.16 (15)C23—C27—C2461.17 (16)
C12—C9—C10120.4 (2)C23—C27—Cl4117.33 (19)
C8—C9—C10111.31 (19)C24—C27—Cl4119.62 (19)
C27—C23—C22121.5 (2)C23—C27—Cl3120.81 (19)
C27—C23—C2459.62 (16)C24—C27—Cl3120.98 (19)
C22—C23—C24117.92 (19)Cl4—C27—Cl3109.73 (14)
C27—C23—H23115.4C15—C16—H16A109.5
C22—C23—H23115.4C15—C16—H16B109.5
C24—C23—H23115.4H16A—C16—H16B109.5
C28—C17—C18111.7 (2)C15—C16—H16C109.5
C28—C17—C22111.9 (2)H16A—C16—H16C109.5
C18—C17—C22109.7 (2)H16B—C16—H16C109.5
C28—C17—C26103.3 (2)C4—C3—C2113.1 (3)
C18—C17—C26108.4 (2)C4—C3—H3A109.0
C22—C17—C26111.60 (18)C2—C3—H3A109.0
O2—C15—C16120.5 (3)C4—C3—H3B109.0
O2—C15—C6121.3 (3)C2—C3—H3B109.0
C16—C15—C6117.9 (2)H3A—C3—H3B107.8
C27—C24—C25120.3 (2)C19—C20—C21112.5 (2)
C27—C24—C32119.2 (2)C19—C20—H20A109.1
C25—C24—C32114.9 (2)C21—C20—H20A109.1
C27—C24—C2359.21 (16)C19—C20—H20B109.1
C25—C24—C23111.9 (2)C21—C20—H20B109.1
C32—C24—C23119.6 (2)H20A—C20—H20B107.8
C24—C25—C26108.5 (2)C21—C31—H31A109.5
C24—C25—H25A110.0C21—C31—H31B109.5
C26—C25—H25A110.0H31A—C31—H31B109.5
C24—C25—H25B110.0C21—C31—H31C109.5
C26—C25—H25B110.0H31A—C31—H31C109.5
H25A—C25—H25B108.4H31B—C31—H31C109.5
C20—C21—C30110.6 (2)C2—C13—H13A109.5
C20—C21—C31110.0 (2)C2—C13—H13B109.5
C30—C21—C31106.7 (2)H13A—C13—H13B109.5
C20—C21—C22110.0 (2)C2—C13—H13C109.5
C30—C21—C22109.2 (2)H13A—C13—H13C109.5
C31—C21—C22110.3 (2)H13B—C13—H13C109.5
C5—C6—C15111.5 (2)C9—C12—H12A109.5
C5—C6—C1108.8 (2)C9—C12—H12B109.5
C15—C6—C1112.59 (19)H12A—C12—H12B109.5
C5—C6—C7109.2 (2)C9—C12—H12C109.5
C15—C6—C7103.4 (2)H12A—C12—H12C109.5
C1—C6—C7111.26 (18)H12B—C12—H12C109.5
C3—C2—C13109.9 (2)C24—C32—H0A109.5
C3—C2—C14109.7 (2)C24—C32—H0B109.5
C13—C2—C14107.4 (2)H0A—C32—H0B109.5
C3—C2—C1109.7 (2)C24—C32—H0C109.5
C13—C2—C1109.1 (2)H0A—C32—H0C109.5
C14—C2—C1111.0 (2)H0B—C32—H0C109.5
C25—C26—C17114.6 (2)C20—C19—C18111.1 (2)
C25—C26—H26A108.6C20—C19—H19A109.4
C17—C26—H26A108.6C18—C19—H19A109.4
C25—C26—H26B108.6C20—C19—H19B109.4
C17—C26—H26B108.6C18—C19—H19B109.4
H26A—C26—H26B107.6H19A—C19—H19B108.0
C9—C8—C7108.5 (2)C3—C4—C5111.6 (2)
C9—C8—H8A110.0C3—C4—H4A109.3
C7—C8—H8A110.0C5—C4—H4A109.3
C9—C8—H8B110.0C3—C4—H4B109.3
C7—C8—H8B110.0C5—C4—H4B109.3
H8A—C8—H8B108.4H4A—C4—H4B108.0
C10—C11—C961.08 (15)C2—C14—H14A109.5
C10—C11—Cl1120.89 (17)C2—C14—H14B109.5
C9—C11—Cl1121.24 (18)H14A—C14—H14B109.5
C10—C11—Cl2117.51 (17)C2—C14—H14C109.5
C9—C11—Cl2119.17 (18)H14A—C14—H14C109.5
Cl1—C11—Cl2109.73 (13)H14B—C14—H14C109.5
C8—C7—C6115.29 (19)C28—C29—H29A109.5
C8—C7—H7A108.5C28—C29—H29B109.5
C6—C7—H7A108.5H29A—C29—H29B109.5
C8—C7—H7B108.5C28—C29—H29C109.5
C6—C7—H7B108.5H29A—C29—H29C109.5
H7A—C7—H7B107.5H29B—C29—H29C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.982.643.227 (2)118
C8—H8B···Cl10.972.613.184 (3)118
C22—H22···Cl30.982.613.205 (2)120
C25—H25B···Cl30.972.633.196 (3)117
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBenharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659–o660.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenharref, A., Oukhrib, A., Ait Elhad, M., ElAmmari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.  Google Scholar
First citationBenharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933–o934.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest. Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLassaba, E., Benharref, A., Giorgi, M. & Pierrot, M. (1997). Acta Cryst. C53, 1943–1945.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaki, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o444.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds