organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-3-(3-Methyl­thio­phen-2-yl)-1-p-tolyl­prop-2-en-1-one

aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, bFaculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai Johor, Malaysia, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and dDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in, muneer@najah.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 February 2017; accepted 11 February 2017; online 17 February 2017)

In the title compound, C15H14OS, the dihedral angle between the thio­phene and benzene rings is 31.34 (13)°. The thio­phene S atom and enone C=O group are approximately in an anti orientation. In the crystal, mol­ecules are linked via pairs of very weak C—H-⋯O hydrogen bonds, forming inversion dimers with R22(16) ring motifs.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones and heterocyclic chalcone derivatives play important roles against diverse human diseases due to their anti-inflammatory, anti-leishmanial (Aponte et al., 2010[Aponte, J. C., Castillo, D., Estevez, Y., Gonzalez, G., Arevalo, J., Hammond, G. B. & Sauvain, M. (2010). Bioorg. Med. Chem. Lett. 20, 100-103.]) and other properties. As part of our ongoing studies of such mol­ecules (Tejkiran et al., 2016[Tejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. 324, 33-39.]; Karthik et al., 2016[Karthik, K., Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x170038.]), we report herein the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

The mol­ecule is non-planar, with a dihedral angle of 31.34 (13)° between the methyl-thio­phene and the p-toluene rings that are bridged by the enone group. This value is larger than the 19.13 (15)° reported earlier between the aromatic rings in the related chalcone derivative (E)-3-(2,3-di­chloro­phen­yl)-1-(4-fluoro­phen­yl)prop-2-en-1-one (Naveen et al., 2016[Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Abdoh, M. (2016). IUCrData, 1, x161974.]).

The thio­phene ring is affected by π conjugation. This can be explained by the longer C—S bond lengths of 1.738 (3) Å and 1.704 (3) Å for C11—S1 and C14—S1, respectively. The bond angles about C8 [119.7 (3), 121.3 (3) and 119.0 (3) for O1—C8—C6, O1—C8—C9 and C9—C8—C6, respectively] indicate that this carbon atom is in a distorted trigonal planar conformation, which may be due to the steric bulk of the oxygen atom.

In the crystal, the mol­ecules are linked via pairs of very weak C—H⋯O hydrogen bonds, forming inversion dimers with an [R_{2}^{2}](16) ring motif (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O1i 0.96 2.63 3.554 (4) 163
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
C—H⋯O hydrogen bonds, forming inversion dimers with an [R_{2}^{2}](16) ring motif.

Synthesis and crystallization

A mixture of 3-methyl-2-thio­phene­carboxaldehyde (1 mol) with 4-methyl­aceto­phenone (1 mol) was dissolved in methanol (25 ml) and aqueous potassium hydroxide (15 ml) was added drop wise. The reaction mixture was stirred overnight at room temperature. The solid product obtained was separated, filtered and washed with cold methanol. Pure yellow crystals of the title compound were obtained by recrystallization from methanol solution (yield 78%, m.p. 350–353 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H14OS
Mr 242.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 6.9231 (4), 27.7148 (16), 7.1228 (5)
β (°) 114.774 (4)
V3) 1240.89 (14)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.14
Crystal size (mm) 0.30 × 0.25 × 0.14
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.566, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 8610, 2031, 1598
Rint 0.070
(sin θ/λ)max−1) 0.586
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.174, 1.03
No. of reflections 2031
No. of parameters 156
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.30
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(E)-3-(3-Methylthiophen-2-yl)-1-p-tolylprop-2-en-1-one top
Crystal data top
C15H14OSF(000) = 512
Mr = 242.33Dx = 1.297 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1598 reflections
a = 6.9231 (4) Åθ = 7.0–64.7°
b = 27.7148 (16) ŵ = 2.14 mm1
c = 7.1228 (5) ÅT = 296 K
β = 114.774 (4)°Prism, yellow
V = 1240.89 (14) Å30.30 × 0.25 × 0.14 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2031 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode1598 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.070
Detector resolution: 18.4 pixels mm-1θmax = 64.7°, θmin = 7.0°
φ and ω scansh = 87
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 3230
Tmin = 0.566, Tmax = 0.754l = 78
8610 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1125P)2]
where P = (Fo2 + 2Fc2)/3
2031 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Experimental. IR (cm-1): 3116 (C-H-sp2 stretching of aromatic ring), 2919 (CH-sp3) 1646 (CO ), 1565, 1423 ( CC aromatic Ring).

1H NMR (400 MHz, CDCl3): δ 2.40 ( s, 3H, H-7') , 2.45 ( s, 3H, H-6), 6.94 ( d, 1H, H-4, J = 5.20 Hz), 7.28-7.36 (m, 4H, H-5, H-α, H-3', H-5'), 7.95 (d, 2H, H-2', H-6', J = 8.40 Hz), 8.07(d, 1H, H-β, J = 14.80 Hz).

13C NMR (75 MHz, CDCl3): δ 14.33, 21.70, 119.79, 127.14, 128.52, 129.31, 131.44, 134.64, 135.21, 135.69, 142.63, 143.54, 189.35.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16726 (11)0.78110 (3)0.19824 (12)0.0348 (3)
O10.7151 (3)0.63224 (7)0.3438 (3)0.0352 (7)
C10.4738 (4)0.54657 (10)0.2368 (4)0.0283 (9)
C20.3694 (5)0.50372 (10)0.2248 (4)0.0313 (9)
C30.1868 (5)0.50153 (10)0.2602 (4)0.0303 (9)
C40.1105 (5)0.54441 (11)0.3021 (4)0.0316 (10)
C50.2131 (4)0.58790 (10)0.3123 (4)0.0273 (9)
C60.3991 (4)0.58970 (10)0.2829 (4)0.0250 (8)
C70.0761 (6)0.45430 (11)0.2523 (5)0.0426 (11)
C80.5255 (4)0.63491 (10)0.3072 (4)0.0279 (9)
C90.4192 (5)0.68178 (10)0.2859 (4)0.0276 (9)
C100.5260 (5)0.72348 (10)0.3183 (4)0.0286 (9)
C110.4400 (4)0.77137 (10)0.2968 (4)0.0269 (9)
C120.5471 (5)0.81482 (10)0.3461 (4)0.0309 (10)
C130.4087 (5)0.85438 (11)0.3060 (5)0.0335 (10)
C140.2008 (5)0.84200 (11)0.2269 (4)0.0343 (10)
C150.7838 (5)0.81953 (11)0.4367 (6)0.0474 (13)
H10.596500.546800.213900.0340*
H20.422100.475600.192300.0380*
H40.012800.544000.324000.0380*
H50.156900.616200.339200.0330*
H7A0.160600.435200.370800.0640*
H7B0.057500.437200.128600.0640*
H7C0.060300.460400.252400.0640*
H90.273500.682500.248700.0330*
H100.672100.721200.359300.0340*
H130.455700.886200.331400.0400*
H140.089700.864000.192400.0410*
H15A0.838800.819800.584800.0710*
H15B0.821600.849100.390000.0710*
H15C0.843200.792700.393500.0710*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0330 (5)0.0269 (5)0.0420 (5)0.0017 (3)0.0132 (4)0.0031 (3)
O10.0274 (12)0.0299 (12)0.0449 (13)0.0026 (9)0.0117 (9)0.0026 (9)
C10.0265 (15)0.0290 (16)0.0274 (16)0.0063 (12)0.0094 (12)0.0009 (11)
C20.0406 (18)0.0225 (15)0.0236 (15)0.0071 (13)0.0063 (13)0.0001 (11)
C30.0353 (17)0.0294 (16)0.0168 (14)0.0041 (13)0.0018 (12)0.0028 (11)
C40.0291 (15)0.0389 (19)0.0255 (16)0.0042 (13)0.0101 (12)0.0012 (12)
C50.0290 (15)0.0270 (16)0.0223 (15)0.0052 (12)0.0072 (12)0.0022 (11)
C60.0265 (14)0.0282 (16)0.0144 (13)0.0024 (12)0.0028 (11)0.0005 (10)
C70.055 (2)0.0318 (18)0.0275 (17)0.0094 (15)0.0039 (15)0.0044 (12)
C80.0309 (16)0.0305 (17)0.0203 (14)0.0023 (13)0.0089 (12)0.0002 (11)
C90.0285 (15)0.0268 (16)0.0273 (15)0.0034 (12)0.0115 (12)0.0013 (11)
C100.0326 (16)0.0312 (17)0.0229 (15)0.0005 (13)0.0126 (13)0.0007 (11)
C110.0333 (16)0.0279 (15)0.0224 (15)0.0007 (12)0.0145 (13)0.0008 (11)
C120.0405 (18)0.0284 (17)0.0286 (16)0.0006 (13)0.0193 (13)0.0012 (11)
C130.0474 (19)0.0242 (16)0.0343 (17)0.0019 (14)0.0224 (14)0.0009 (12)
C140.046 (2)0.0234 (16)0.0367 (17)0.0071 (13)0.0204 (15)0.0041 (12)
C150.042 (2)0.0305 (18)0.073 (3)0.0043 (15)0.0273 (18)0.0001 (16)
Geometric parameters (Å, º) top
S1—C111.738 (3)C12—C151.494 (5)
S1—C141.704 (3)C13—C141.352 (5)
O1—C81.229 (4)C1—H10.9300
C1—C21.374 (4)C2—H20.9300
C1—C61.395 (4)C4—H40.9300
C2—C31.390 (5)C5—H50.9300
C3—C41.383 (4)C7—H7A0.9600
C3—C71.506 (5)C7—H7B0.9600
C4—C51.385 (4)C7—H7C0.9600
C5—C61.389 (4)C9—H90.9300
C6—C81.496 (4)C10—H100.9300
C8—C91.469 (4)C13—H130.9300
C9—C101.339 (4)C14—H140.9300
C10—C111.436 (4)C15—H15A0.9600
C11—C121.380 (4)C15—H15B0.9600
C12—C131.404 (5)C15—H15C0.9600
C11—S1—C1492.00 (15)C1—C2—H2119.00
C2—C1—C6121.2 (3)C3—C2—H2119.00
C1—C2—C3121.4 (3)C3—C4—H4119.00
C2—C3—C4117.4 (3)C5—C4—H4119.00
C2—C3—C7121.2 (3)C4—C5—H5120.00
C4—C3—C7121.4 (3)C6—C5—H5120.00
C3—C4—C5121.7 (3)C3—C7—H7A109.00
C4—C5—C6120.7 (3)C3—C7—H7B109.00
C1—C6—C5117.6 (3)C3—C7—H7C109.00
C1—C6—C8119.2 (3)H7A—C7—H7B109.00
C5—C6—C8123.1 (3)H7A—C7—H7C110.00
O1—C8—C6119.7 (3)H7B—C7—H7C110.00
O1—C8—C9121.3 (3)C8—C9—H9119.00
C6—C8—C9119.0 (3)C10—C9—H9119.00
C8—C9—C10121.9 (3)C9—C10—H10116.00
C9—C10—C11127.2 (3)C11—C10—H10116.00
S1—C11—C10121.2 (2)C12—C13—H13123.00
S1—C11—C12110.1 (2)C14—C13—H13123.00
C10—C11—C12128.7 (3)S1—C14—H14124.00
C11—C12—C13112.4 (3)C13—C14—H14124.00
C11—C12—C15124.1 (3)C12—C15—H15A109.00
C13—C12—C15123.4 (3)C12—C15—H15B109.00
C12—C13—C14113.8 (3)C12—C15—H15C109.00
S1—C14—C13111.7 (2)H15A—C15—H15B109.00
C2—C1—H1119.00H15A—C15—H15C109.00
C6—C1—H1119.00H15B—C15—H15C110.00
C14—S1—C11—C10179.2 (2)C5—C6—C8—O1157.1 (3)
C14—S1—C11—C120.6 (2)C5—C6—C8—C923.1 (4)
C11—S1—C14—C130.4 (2)O1—C8—C9—C104.4 (4)
C6—C1—C2—C30.7 (4)C6—C8—C9—C10175.8 (3)
C2—C1—C6—C51.2 (4)C8—C9—C10—C11178.1 (3)
C2—C1—C6—C8176.2 (2)C9—C10—C11—S16.1 (4)
C1—C2—C3—C41.8 (4)C9—C10—C11—C12173.7 (3)
C1—C2—C3—C7178.4 (3)S1—C11—C12—C130.7 (3)
C2—C3—C4—C51.1 (4)S1—C11—C12—C15179.3 (3)
C7—C3—C4—C5179.1 (3)C10—C11—C12—C13179.2 (3)
C3—C4—C5—C60.8 (4)C10—C11—C12—C150.5 (5)
C4—C5—C6—C11.9 (4)C11—C12—C13—C140.4 (4)
C4—C5—C6—C8175.4 (2)C15—C12—C13—C14179.0 (3)
C1—C6—C8—O120.2 (4)C12—C13—C14—S10.1 (4)
C1—C6—C8—C9159.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O1i0.962.633.554 (4)163
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility. JJ thanks Universiti Teknologi Malaysia (UTM) for financial support under the Fundamental Research Grant Scheme (FRGS) of vote numbers 4F122 and 4F448.

References

First citationAponte, J. C., Castillo, D., Estevez, Y., Gonzalez, G., Arevalo, J., Hammond, G. B. & Sauvain, M. (2010). Bioorg. Med. Chem. Lett. 20, 100–103.  CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKarthik, K., Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x170038.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Abdoh, M. (2016). IUCrData, 1, x161974.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. 324, 33–39.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds