organic compounds
A correction has been published for this article. To view the correction, click here.
(E)-3-(3-Methylthiophen-2-yl)-1-p-tolylprop-2-en-1-one
aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, bFaculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai Johor, Malaysia, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and dDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in, muneer@najah.edu
In the title compound, C15H14OS, the dihedral angle between the thiophene and benzene rings is 31.34 (13)°. The thiophene S atom and enone C=O group are approximately in an anti orientation. In the crystal, molecules are linked via pairs of very weak C—H-⋯O hydrogen bonds, forming inversion dimers with R22(16) ring motifs.
Keywords: crystal structure; bis-chalcone; π-conjugation.
CCDC reference: 1532444
Structure description
et al., 2010) and other properties. As part of our ongoing studies of such molecules (Tejkiran et al., 2016; Karthik et al., 2016), we report herein the synthesis and of the title compound (Fig. 1).
and heterocyclic chalcone derivatives play important roles against diverse human diseases due to their anti-inflammatory, anti-leishmanial (AponteThe molecule is non-planar, with a dihedral angle of 31.34 (13)° between the methyl-thiophene and the p-toluene rings that are bridged by the enone group. This value is larger than the 19.13 (15)° reported earlier between the aromatic rings in the related chalcone derivative (E)-3-(2,3-dichlorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (Naveen et al., 2016).
The thiophene ring is affected by π conjugation. This can be explained by the longer C—S bond lengths of 1.738 (3) Å and 1.704 (3) Å for C11—S1 and C14—S1, respectively. The bond angles about C8 [119.7 (3), 121.3 (3) and 119.0 (3) for O1—C8—C6, O1—C8—C9 and C9—C8—C6, respectively] indicate that this carbon atom is in a distorted trigonal planar conformation, which may be due to the steric bulk of the oxygen atom.
In the crystal, the molecules are linked via pairs of very weak C—H⋯O hydrogen bonds, forming inversion dimers with an (16) ring motif (Table 1, Fig. 2).
Synthesis and crystallization
A mixture of 3-methyl-2-thiophenecarboxaldehyde (1 mol) with 4-methylacetophenone (1 mol) was dissolved in methanol (25 ml) and aqueous potassium hydroxide (15 ml) was added drop wise. The reaction mixture was stirred overnight at room temperature. The solid product obtained was separated, filtered and washed with cold methanol. Pure yellow crystals of the title compound were obtained by recrystallization from methanol solution (yield 78%, m.p. 350–353 K).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1532444
https://doi.org/10.1107/S2414314617002346/hb4125sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617002346/hb4125Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617002346/hb4125Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).C15H14OS | F(000) = 512 |
Mr = 242.33 | Dx = 1.297 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ybc | Cell parameters from 1598 reflections |
a = 6.9231 (4) Å | θ = 7.0–64.7° |
b = 27.7148 (16) Å | µ = 2.14 mm−1 |
c = 7.1228 (5) Å | T = 296 K |
β = 114.774 (4)° | Prism, yellow |
V = 1240.89 (14) Å3 | 0.30 × 0.25 × 0.14 mm |
Z = 4 |
Bruker X8 Proteum diffractometer | 2031 independent reflections |
Radiation source: Bruker MicroStar microfocus rotating anode | 1598 reflections with I > 2σ(I) |
Helios multilayer optics monochromator | Rint = 0.070 |
Detector resolution: 18.4 pixels mm-1 | θmax = 64.7°, θmin = 7.0° |
φ and ω scans | h = −8→7 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −32→30 |
Tmin = 0.566, Tmax = 0.754 | l = −7→8 |
8610 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.174 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.1125P)2] where P = (Fo2 + 2Fc2)/3 |
2031 reflections | (Δ/σ)max = 0.001 |
156 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
Experimental. IR (cm-1): 3116 (C-H-sp2 stretching of aromatic ring), 2919 (CH-sp3) 1646 (C═O ), 1565, 1423 ( C═C aromatic Ring). 1H NMR (400 MHz, CDCl3): δ 2.40 ( s, 3H, H-7') , 2.45 ( s, 3H, H-6), 6.94 ( d, 1H, H-4, J = 5.20 Hz), 7.28-7.36 (m, 4H, H-5, H-α, H-3', H-5'), 7.95 (d, 2H, H-2', H-6', J = 8.40 Hz), 8.07(d, 1H, H-β, J = 14.80 Hz). 13C NMR (75 MHz, CDCl3): δ 14.33, 21.70, 119.79, 127.14, 128.52, 129.31, 131.44, 134.64, 135.21, 135.69, 142.63, 143.54, 189.35. |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.16726 (11) | 0.78110 (3) | 0.19824 (12) | 0.0348 (3) | |
O1 | 0.7151 (3) | 0.63224 (7) | 0.3438 (3) | 0.0352 (7) | |
C1 | 0.4738 (4) | 0.54657 (10) | 0.2368 (4) | 0.0283 (9) | |
C2 | 0.3694 (5) | 0.50372 (10) | 0.2248 (4) | 0.0313 (9) | |
C3 | 0.1868 (5) | 0.50153 (10) | 0.2602 (4) | 0.0303 (9) | |
C4 | 0.1105 (5) | 0.54441 (11) | 0.3021 (4) | 0.0316 (10) | |
C5 | 0.2131 (4) | 0.58790 (10) | 0.3123 (4) | 0.0273 (9) | |
C6 | 0.3991 (4) | 0.58970 (10) | 0.2829 (4) | 0.0250 (8) | |
C7 | 0.0761 (6) | 0.45430 (11) | 0.2523 (5) | 0.0426 (11) | |
C8 | 0.5255 (4) | 0.63491 (10) | 0.3072 (4) | 0.0279 (9) | |
C9 | 0.4192 (5) | 0.68178 (10) | 0.2859 (4) | 0.0276 (9) | |
C10 | 0.5260 (5) | 0.72348 (10) | 0.3183 (4) | 0.0286 (9) | |
C11 | 0.4400 (4) | 0.77137 (10) | 0.2968 (4) | 0.0269 (9) | |
C12 | 0.5471 (5) | 0.81482 (10) | 0.3461 (4) | 0.0309 (10) | |
C13 | 0.4087 (5) | 0.85438 (11) | 0.3060 (5) | 0.0335 (10) | |
C14 | 0.2008 (5) | 0.84200 (11) | 0.2269 (4) | 0.0343 (10) | |
C15 | 0.7838 (5) | 0.81953 (11) | 0.4367 (6) | 0.0474 (13) | |
H1 | 0.59650 | 0.54680 | 0.21390 | 0.0340* | |
H2 | 0.42210 | 0.47560 | 0.19230 | 0.0380* | |
H4 | −0.01280 | 0.54400 | 0.32400 | 0.0380* | |
H5 | 0.15690 | 0.61620 | 0.33920 | 0.0330* | |
H7A | 0.16060 | 0.43520 | 0.37080 | 0.0640* | |
H7B | 0.05750 | 0.43720 | 0.12860 | 0.0640* | |
H7C | −0.06030 | 0.46040 | 0.25240 | 0.0640* | |
H9 | 0.27350 | 0.68250 | 0.24870 | 0.0330* | |
H10 | 0.67210 | 0.72120 | 0.35930 | 0.0340* | |
H13 | 0.45570 | 0.88620 | 0.33140 | 0.0400* | |
H14 | 0.08970 | 0.86400 | 0.19240 | 0.0410* | |
H15A | 0.83880 | 0.81980 | 0.58480 | 0.0710* | |
H15B | 0.82160 | 0.84910 | 0.39000 | 0.0710* | |
H15C | 0.84320 | 0.79270 | 0.39350 | 0.0710* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0330 (5) | 0.0269 (5) | 0.0420 (5) | 0.0017 (3) | 0.0132 (4) | −0.0031 (3) |
O1 | 0.0274 (12) | 0.0299 (12) | 0.0449 (13) | 0.0026 (9) | 0.0117 (9) | 0.0026 (9) |
C1 | 0.0265 (15) | 0.0290 (16) | 0.0274 (16) | 0.0063 (12) | 0.0094 (12) | 0.0009 (11) |
C2 | 0.0406 (18) | 0.0225 (15) | 0.0236 (15) | 0.0071 (13) | 0.0063 (13) | 0.0001 (11) |
C3 | 0.0353 (17) | 0.0294 (16) | 0.0168 (14) | −0.0041 (13) | 0.0018 (12) | 0.0028 (11) |
C4 | 0.0291 (15) | 0.0389 (19) | 0.0255 (16) | −0.0042 (13) | 0.0101 (12) | 0.0012 (12) |
C5 | 0.0290 (15) | 0.0270 (16) | 0.0223 (15) | 0.0052 (12) | 0.0072 (12) | −0.0022 (11) |
C6 | 0.0265 (14) | 0.0282 (16) | 0.0144 (13) | 0.0024 (12) | 0.0028 (11) | 0.0005 (10) |
C7 | 0.055 (2) | 0.0318 (18) | 0.0275 (17) | −0.0094 (15) | 0.0039 (15) | 0.0044 (12) |
C8 | 0.0309 (16) | 0.0305 (17) | 0.0203 (14) | 0.0023 (13) | 0.0089 (12) | 0.0002 (11) |
C9 | 0.0285 (15) | 0.0268 (16) | 0.0273 (15) | 0.0034 (12) | 0.0115 (12) | −0.0013 (11) |
C10 | 0.0326 (16) | 0.0312 (17) | 0.0229 (15) | 0.0005 (13) | 0.0126 (13) | −0.0007 (11) |
C11 | 0.0333 (16) | 0.0279 (15) | 0.0224 (15) | 0.0007 (12) | 0.0145 (13) | −0.0008 (11) |
C12 | 0.0405 (18) | 0.0284 (17) | 0.0286 (16) | −0.0006 (13) | 0.0193 (13) | 0.0012 (11) |
C13 | 0.0474 (19) | 0.0242 (16) | 0.0343 (17) | −0.0019 (14) | 0.0224 (14) | 0.0009 (12) |
C14 | 0.046 (2) | 0.0234 (16) | 0.0367 (17) | 0.0071 (13) | 0.0204 (15) | 0.0041 (12) |
C15 | 0.042 (2) | 0.0305 (18) | 0.073 (3) | −0.0043 (15) | 0.0273 (18) | 0.0001 (16) |
S1—C11 | 1.738 (3) | C12—C15 | 1.494 (5) |
S1—C14 | 1.704 (3) | C13—C14 | 1.352 (5) |
O1—C8 | 1.229 (4) | C1—H1 | 0.9300 |
C1—C2 | 1.374 (4) | C2—H2 | 0.9300 |
C1—C6 | 1.395 (4) | C4—H4 | 0.9300 |
C2—C3 | 1.390 (5) | C5—H5 | 0.9300 |
C3—C4 | 1.383 (4) | C7—H7A | 0.9600 |
C3—C7 | 1.506 (5) | C7—H7B | 0.9600 |
C4—C5 | 1.385 (4) | C7—H7C | 0.9600 |
C5—C6 | 1.389 (4) | C9—H9 | 0.9300 |
C6—C8 | 1.496 (4) | C10—H10 | 0.9300 |
C8—C9 | 1.469 (4) | C13—H13 | 0.9300 |
C9—C10 | 1.339 (4) | C14—H14 | 0.9300 |
C10—C11 | 1.436 (4) | C15—H15A | 0.9600 |
C11—C12 | 1.380 (4) | C15—H15B | 0.9600 |
C12—C13 | 1.404 (5) | C15—H15C | 0.9600 |
C11—S1—C14 | 92.00 (15) | C1—C2—H2 | 119.00 |
C2—C1—C6 | 121.2 (3) | C3—C2—H2 | 119.00 |
C1—C2—C3 | 121.4 (3) | C3—C4—H4 | 119.00 |
C2—C3—C4 | 117.4 (3) | C5—C4—H4 | 119.00 |
C2—C3—C7 | 121.2 (3) | C4—C5—H5 | 120.00 |
C4—C3—C7 | 121.4 (3) | C6—C5—H5 | 120.00 |
C3—C4—C5 | 121.7 (3) | C3—C7—H7A | 109.00 |
C4—C5—C6 | 120.7 (3) | C3—C7—H7B | 109.00 |
C1—C6—C5 | 117.6 (3) | C3—C7—H7C | 109.00 |
C1—C6—C8 | 119.2 (3) | H7A—C7—H7B | 109.00 |
C5—C6—C8 | 123.1 (3) | H7A—C7—H7C | 110.00 |
O1—C8—C6 | 119.7 (3) | H7B—C7—H7C | 110.00 |
O1—C8—C9 | 121.3 (3) | C8—C9—H9 | 119.00 |
C6—C8—C9 | 119.0 (3) | C10—C9—H9 | 119.00 |
C8—C9—C10 | 121.9 (3) | C9—C10—H10 | 116.00 |
C9—C10—C11 | 127.2 (3) | C11—C10—H10 | 116.00 |
S1—C11—C10 | 121.2 (2) | C12—C13—H13 | 123.00 |
S1—C11—C12 | 110.1 (2) | C14—C13—H13 | 123.00 |
C10—C11—C12 | 128.7 (3) | S1—C14—H14 | 124.00 |
C11—C12—C13 | 112.4 (3) | C13—C14—H14 | 124.00 |
C11—C12—C15 | 124.1 (3) | C12—C15—H15A | 109.00 |
C13—C12—C15 | 123.4 (3) | C12—C15—H15B | 109.00 |
C12—C13—C14 | 113.8 (3) | C12—C15—H15C | 109.00 |
S1—C14—C13 | 111.7 (2) | H15A—C15—H15B | 109.00 |
C2—C1—H1 | 119.00 | H15A—C15—H15C | 109.00 |
C6—C1—H1 | 119.00 | H15B—C15—H15C | 110.00 |
C14—S1—C11—C10 | 179.2 (2) | C5—C6—C8—O1 | 157.1 (3) |
C14—S1—C11—C12 | −0.6 (2) | C5—C6—C8—C9 | −23.1 (4) |
C11—S1—C14—C13 | 0.4 (2) | O1—C8—C9—C10 | −4.4 (4) |
C6—C1—C2—C3 | −0.7 (4) | C6—C8—C9—C10 | 175.8 (3) |
C2—C1—C6—C5 | −1.2 (4) | C8—C9—C10—C11 | 178.1 (3) |
C2—C1—C6—C8 | 176.2 (2) | C9—C10—C11—S1 | −6.1 (4) |
C1—C2—C3—C4 | 1.8 (4) | C9—C10—C11—C12 | 173.7 (3) |
C1—C2—C3—C7 | −178.4 (3) | S1—C11—C12—C13 | 0.7 (3) |
C2—C3—C4—C5 | −1.1 (4) | S1—C11—C12—C15 | 179.3 (3) |
C7—C3—C4—C5 | 179.1 (3) | C10—C11—C12—C13 | −179.2 (3) |
C3—C4—C5—C6 | −0.8 (4) | C10—C11—C12—C15 | −0.5 (5) |
C4—C5—C6—C1 | 1.9 (4) | C11—C12—C13—C14 | −0.4 (4) |
C4—C5—C6—C8 | −175.4 (2) | C15—C12—C13—C14 | −179.0 (3) |
C1—C6—C8—O1 | −20.2 (4) | C12—C13—C14—S1 | −0.1 (4) |
C1—C6—C8—C9 | 159.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···O1i | 0.96 | 2.63 | 3.554 (4) | 163 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility. JJ thanks Universiti Teknologi Malaysia (UTM) for financial support under the Fundamental Research Grant Scheme (FRGS) of vote numbers 4F122 and 4F448.
References
Aponte, J. C., Castillo, D., Estevez, Y., Gonzalez, G., Arevalo, J., Hammond, G. B. & Sauvain, M. (2010). Bioorg. Med. Chem. Lett. 20, 100–103. CrossRef CAS Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Karthik, K., Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x170038. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Abdoh, M. (2016). IUCrData, 1, x161974. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. 324, 33–39. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.