organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Hy­dr­oxy-2-[(4-hy­dr­oxy­benz­yl)aza­nium­yl]propano­ate monohydrate

CROSSMARK_Color_square_no_text.svg

aInstitute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: luliping@sxu.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 February 2017; accepted 17 February 2017; online 21 February 2017)

In the title hydrated zwitterion, C10H13NO4·H2O, the N—C—C—OH side chain shows a gauche conformation [torsion angle = −59.05 (18)°]. In the crystal, the components are linked by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds to generate a three-dimensional supra­molecular network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recently, a copper(II) complex with a reduced amino acid Schiff base was shown to exhibit inhibiting activity with respect to protein tyrosine phosphatase (Li et al., 2016[Li, Y. H., Lu, L. P., Zhu, M. L., Yuan, C. X., Feng, S. S. & Gao, Z. Q. (2016). Chin. J. Struct. Chem. 35, 1686-1693.]). In our previous reports, we have shown that VO(II) complexes have very strong inhibitory activity towards protein tyrosine phosphatase (Lu & Zhu, 2014[Lu, L. P. & Zhu, M. L. (2014). Antioxid. Redox Signal. 20, 2210-2224.]; Han et al., 2012[Han, H., Lu, L. P., Wang, Q. M., Zhu, M. L., Yuan, C. X., Xing, S. & Fu, X. Q. (2012). Dalton Trans. 41, 11116-11124.]; Li et al. 2016[Li, Y. H., Lu, L. P., Zhu, M. L., Yuan, C. X., Feng, S. S. & Gao, Z. Q. (2016). Chin. J. Struct. Chem. 35, 1686-1693.]). Thus, 3-hy­droxy-2-[(4-hy­droxy­benz­yl)amino]­propanoic acid was reacted with VOSO4 in alkaline solution to prepare its VO complex in order to test its biological activity. However, no complex of VO(II) was formed; instead crystals of the title compound were obtained.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The asymmetric unit consists of a 3-hy­droxy-2-[(4-hy­droxy­benz­yl)aza­nium­yl]propano­ate zwitterion (nominal proton transfer from the carb­oxy­lic acid group to the secondary amine group) and a water mol­ecule. The zwitterionic form found agrees with that of many amino acids. The C5—C4—N1—C2 and N1—C1—C2—O3 links both show a gauche conformation [torsion angles = 65.0 (2) and −59.05 (18)°, respectively].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

In the crystal, mol­ecules are connected through a network of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]), leading to the formation of a three-dimensional supra­molecular network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5 0.98 (3) 1.79 (3) 2.759 (2) 166 (2)
O4—H4⋯O2i 0.90 (3) 1.72 (3) 2.624 (2) 174 (3)
N1—H1A⋯O1ii 0.94 (2) 1.98 (2) 2.8390 (19) 150 (2)
N1—H1B⋯O1iii 0.96 (3) 1.84 (3) 2.782 (2) 170 (2)
C2—H2⋯O4iv 1.00 2.54 3.300 (2) 132
C4—H4A⋯O3ii 0.99 2.55 3.392 (2) 143
O5—H5A⋯O2v 0.85 (3) 1.99 (3) 2.8380 (19) 172 (3)
O5—H5B⋯O4vi 0.87 (3) 1.92 (3) 2.785 (2) 171 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) x+1, y, z; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The C—H⋯O, O—H⋯O and N—H⋯O hydrogen-bonded (dotted lines) network. [Symmetry codes: (A) x + [{1\over 2}], −y + [{1\over 2}], 1 − z; (B) x + [{1\over 2}], −y + [{3\over 2}], 1 − z; (C) x + 1, y, z; (D) x − [{1\over 2}], −y + [{1\over 2}], 1 − z; (E) −x, y + [{1\over 2}], −z + [{1\over 2}]; (F) −x + [{3\over 2}], 1 − y, z − [{1\over 2}].]

Synthesis and crystallization

A mixture containing VOSO4·xH2O (0.1 mmol), 3-hy­droxy-2-[(4-hy­droxy­benz­yl)amino]­propanoic acid (0.1 mmol), KOH (0.2 mmol) and H2O (6.0 ml) was stirred for 30 min at room temperature. The reaction mixture was filtered and the liquor was kept at room temperature. Light-yellow block-shaped crystals of the title compound appeared after 3 d in 40% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The DISP instruction was used in the SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) refinements in order to correct anomalous scattering values (f′ and f′′) of elements for the synchrotron wavelength used.

Table 2
Experimental details

Crystal data
Chemical formula C10H13NO4·H2O
Mr 229.23
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 5.5140 (11), 12.418 (3), 15.372 (3)
V3) 1052.6 (4)
Z 4
Radiation type Synchrotron, λ = 0.7200 Å
μ (mm−1) 0.12
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Mar165
Absorption correction Multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.965, 0.977
No. of measured, independent and observed [I > 2σ(I)] reflections 5039, 2721, 2624
Rint 0.025
(sin θ/λ)max−1) 0.681
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.11
No. of reflections 2721
No. of parameters 164
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.22
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.2 (12)
Computer programs: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: mar165; cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: pubCIF (Westrip, 2010).

3-Hydroxy-2-[(4-hydroxybenzyl)azaniumyl]propanoate monohydrate top
Crystal data top
C10H13NO4·H2ODx = 1.447 Mg m3
Mr = 229.23Synchrotron radiation, λ = 0.7200 Å
Orthorhombic, P212121Cell parameters from 5057 reflections
a = 5.5140 (11) Åθ = 2.7–29.6°
b = 12.418 (3) ŵ = 0.12 mm1
c = 15.372 (3) ÅT = 100 K
V = 1052.6 (4) Å3Block, light yelloe
Z = 40.30 × 0.20 × 0.20 mm
F(000) = 488
Data collection top
Mar165
diffractometer
2624 reflections with I > 2σ(I)
Radiation source: synchrotron, 3W1A at BSRFRint = 0.025
oscillation mode scansθmax = 29.3°, θmin = 2.7°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 07
Tmin = 0.965, Tmax = 0.977k = 1616
5039 measured reflectionsl = 2020
2721 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.2819P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.19 e Å3
2721 reflectionsΔρmin = 0.22 e Å3
164 parametersAbsolute structure: Refined as an inversion twin
0 restraintsAbsolute structure parameter: 0.2 (12)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1740 (2)0.64457 (10)0.46536 (8)0.0124 (3)
O20.1669 (3)0.49448 (10)0.38500 (9)0.0145 (3)
O30.2072 (3)0.74505 (10)0.34128 (9)0.0153 (3)
H30.297 (6)0.788 (2)0.2981 (18)0.023*
O40.6113 (3)0.16978 (11)0.65474 (10)0.0157 (3)
H40.507 (5)0.116 (2)0.6406 (18)0.024*
N10.3273 (3)0.63321 (11)0.49124 (9)0.0087 (3)
H1A0.282 (5)0.7061 (19)0.4913 (15)0.010*
H1B0.499 (5)0.6282 (19)0.4830 (16)0.010*
C10.0667 (3)0.57215 (13)0.42362 (11)0.0094 (3)
C20.2125 (3)0.57711 (13)0.41594 (11)0.0097 (3)
H20.2767930.5018960.4130990.012*
C30.2880 (4)0.63678 (14)0.33320 (11)0.0118 (3)
H3A0.4664560.6346700.3264010.014*
H3B0.2133180.6025710.2815650.014*
C40.2672 (3)0.59029 (14)0.58072 (11)0.0113 (3)
H4A0.3384420.6385920.6251160.014*
H4B0.0889780.5907760.5885830.014*
C50.3605 (3)0.47754 (14)0.59503 (11)0.0104 (3)
C60.2266 (4)0.38722 (13)0.56981 (11)0.0120 (3)
H60.0773100.3969150.5399900.014*
C70.3078 (4)0.28317 (14)0.58753 (11)0.0132 (3)
H70.2159560.2225030.5692700.016*
C80.5258 (3)0.26924 (14)0.63247 (11)0.0122 (3)
C90.6632 (3)0.35835 (15)0.65700 (12)0.0132 (3)
H90.8126250.3486870.6867820.016*
C100.5809 (4)0.46163 (13)0.63769 (12)0.0121 (3)
H100.6761540.5221580.6538200.014*
O50.4627 (3)0.88897 (11)0.23976 (9)0.0154 (3)
H5A0.381 (5)0.927 (2)0.2039 (19)0.023*
H5B0.595 (6)0.864 (2)0.2161 (19)0.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0082 (6)0.0102 (5)0.0188 (6)0.0008 (5)0.0009 (5)0.0022 (5)
O20.0108 (7)0.0111 (6)0.0216 (6)0.0021 (5)0.0026 (5)0.0048 (5)
O30.0190 (7)0.0096 (5)0.0173 (6)0.0027 (5)0.0047 (5)0.0035 (5)
O40.0141 (7)0.0085 (6)0.0246 (7)0.0025 (5)0.0049 (5)0.0007 (5)
N10.0074 (7)0.0066 (6)0.0122 (6)0.0005 (5)0.0002 (5)0.0003 (5)
C10.0101 (8)0.0066 (6)0.0117 (7)0.0001 (6)0.0001 (6)0.0003 (5)
C20.0092 (8)0.0083 (6)0.0117 (7)0.0002 (6)0.0001 (6)0.0008 (5)
C30.0105 (8)0.0111 (7)0.0137 (7)0.0016 (6)0.0014 (6)0.0007 (6)
C40.0112 (9)0.0114 (7)0.0113 (7)0.0008 (6)0.0007 (6)0.0003 (6)
C50.0098 (8)0.0110 (7)0.0106 (7)0.0003 (6)0.0007 (6)0.0011 (5)
C60.0108 (9)0.0119 (7)0.0134 (7)0.0016 (6)0.0012 (6)0.0019 (6)
C70.0142 (9)0.0106 (7)0.0149 (7)0.0024 (6)0.0020 (7)0.0002 (6)
C80.0126 (9)0.0112 (7)0.0127 (7)0.0009 (6)0.0015 (6)0.0004 (6)
C90.0101 (8)0.0139 (7)0.0155 (7)0.0001 (6)0.0022 (6)0.0001 (6)
C100.0106 (8)0.0115 (7)0.0141 (7)0.0031 (6)0.0014 (6)0.0006 (6)
O50.0146 (8)0.0158 (6)0.0157 (6)0.0026 (5)0.0016 (5)0.0035 (5)
Geometric parameters (Å, º) top
O1—C11.253 (2)C4—C51.508 (2)
O2—C11.260 (2)C4—H4A0.9900
O3—C31.422 (2)C4—H4B0.9900
O3—H30.98 (3)C5—C101.395 (3)
O4—C81.366 (2)C5—C61.398 (2)
O4—H40.90 (3)C6—C71.394 (2)
N1—C21.492 (2)C6—H60.9500
N1—C41.512 (2)C7—C81.397 (3)
N1—H1A0.94 (2)C7—H70.9500
N1—H1B0.96 (3)C8—C91.393 (2)
C1—C21.545 (3)C9—C101.393 (2)
C2—C31.530 (2)C9—H90.9500
C2—H21.0000C10—H100.9500
C3—H3A0.9900O5—H5A0.85 (3)
C3—H3B0.9900O5—H5B0.87 (3)
C3—O3—H3107.0 (16)C5—C4—H4A109.1
C8—O4—H4112.6 (18)N1—C4—H4A109.1
C2—N1—C4116.62 (14)C5—C4—H4B109.1
C2—N1—H1A109.8 (15)N1—C4—H4B109.1
C4—N1—H1A106.3 (15)H4A—C4—H4B107.8
C2—N1—H1B106.7 (14)C10—C5—C6118.48 (16)
C4—N1—H1B108.3 (15)C10—C5—C4119.83 (16)
H1A—N1—H1B109 (2)C6—C5—C4121.64 (17)
O1—C1—O2125.72 (17)C7—C6—C5121.34 (17)
O1—C1—C2118.72 (15)C7—C6—H6119.3
O2—C1—C2115.54 (15)C5—C6—H6119.3
N1—C2—C3107.65 (14)C6—C7—C8119.17 (16)
N1—C2—C1112.46 (14)C6—C7—H7120.4
C3—C2—C1110.73 (14)C8—C7—H7120.4
N1—C2—H2108.6O4—C8—C9117.56 (16)
C3—C2—H2108.6O4—C8—C7122.21 (16)
C1—C2—H2108.6C9—C8—C7120.23 (16)
O3—C3—C2107.47 (13)C10—C9—C8119.76 (17)
O3—C3—H3A110.2C10—C9—H9120.1
C2—C3—H3A110.2C8—C9—H9120.1
O3—C3—H3B110.2C9—C10—C5120.98 (16)
C2—C3—H3B110.2C9—C10—H10119.5
H3A—C3—H3B108.5C5—C10—H10119.5
C5—C4—N1112.66 (14)H5A—O5—H5B112 (3)
C4—N1—C2—C3177.31 (14)C10—C5—C6—C70.9 (3)
C4—N1—C2—C155.06 (18)C4—C5—C6—C7176.43 (16)
O1—C1—C2—N128.0 (2)C5—C6—C7—C80.9 (3)
O2—C1—C2—N1153.20 (14)C6—C7—C8—O4177.55 (17)
O1—C1—C2—C392.54 (18)C6—C7—C8—C91.8 (3)
O2—C1—C2—C386.31 (18)O4—C8—C9—C10178.43 (17)
N1—C2—C3—O359.05 (18)C7—C8—C9—C100.9 (3)
C1—C2—C3—O364.27 (18)C8—C9—C10—C50.9 (3)
C2—N1—C4—C565.0 (2)C6—C5—C10—C91.7 (3)
N1—C4—C5—C1096.82 (19)C4—C5—C10—C9175.60 (17)
N1—C4—C5—C685.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O50.98 (3)1.79 (3)2.759 (2)166 (2)
O4—H4···O2i0.90 (3)1.72 (3)2.624 (2)174 (3)
N1—H1A···O1ii0.94 (2)1.98 (2)2.8390 (19)150 (2)
N1—H1B···O1iii0.96 (3)1.84 (3)2.782 (2)170 (2)
C2—H2···O4iv1.002.543.300 (2)132
C4—H4A···O3ii0.992.553.392 (2)143
O5—H5A···O2v0.85 (3)1.99 (3)2.8380 (19)172 (3)
O5—H5B···O4vi0.87 (3)1.92 (3)2.785 (2)171 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x+1, y, z; (iv) x1/2, y+1/2, z+1; (v) x, y+1/2, z+1/2; (vi) x+3/2, y+1, z1/2.
 

Funding information

Funding for this research was provided by: Natural Science Foundation of China (award No. 21571118).

References

First citationHan, H., Lu, L. P., Wang, Q. M., Zhu, M. L., Yuan, C. X., Xing, S. & Fu, X. Q. (2012). Dalton Trans. 41, 11116–11124.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, Y. H., Lu, L. P., Zhu, M. L., Yuan, C. X., Feng, S. S. & Gao, Z. Q. (2016). Chin. J. Struct. Chem. 35, 1686–1693.  CAS Google Scholar
First citationLu, L. P. & Zhu, M. L. (2014). Antioxid. Redox Signal. 20, 2210–2224.  CrossRef CAS PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds