organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(3-Methyl­phen­yl)-3-[(3-methyl-5-phenyl-1H-pyrazol-1-yl)meth­yl]-4,5-di­hydro-1H-1,2,4-triazole-5-thione

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ePharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, 71515 Assiut, Egypt, fFaculty of Pharmacy, Medicinal Chemistry Department, Assiut University, Assiut 71526, Egypt, and gChemistry Department, College of Education, Salahaddin University-Hawler, Erbil, Kurdistan Region, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 February 2017; accepted 2 February 2017; online 7 February 2017)

The title compound, C20H19N5S, adopts a `contorted' conformation and the dihedral angle between the heterocyclic rings is 86.54 (6)°. In the crystal, complementary N—H⋯N hydrogen bonds form centrosymmetric dimers, which generate R22(14) loops. The dimers stack along the a-axis direction with adjacent stacks having their aromatic rings directed towards one another.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our ongoing studies of triazole derivatives (Mague et al., 2015[Mague, J. T., Mohamed, S. K., Akkurt, M. & Albayati, M. R. (2015). Acta Cryst. E71, o417.]), we herein describe the synthesis and crystal structure of the title compound (Fig. 1[link]). The dihedral angle between the planes of the C4–C8 and N1–N3/C1/C2 rings is 83.83 (5)° while that between the latter plane and that of the N4/N5/C11–C13 ring is 86.54 (6)°. The dihedral angle between the planes of the N4/N5/C11–C13 and C15–C20 rings is 52.92 (5)°. The mol­ecule may be described as adopting a `contorted' conformation.

[Figure 1]
Figure 1
The title mol­ecule with 25% probability ellipsoids.

In the crystal, complementary N3—H3⋯N5i hydrogen bonds form centrosymmetric dimers, which generate R22(14) loops (Table 1[link] and Fig. 2[link]). These dimers stack along the a-axis direction with the aromatic rings pointing towards those of adjacent stacks (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N5i 0.91 1.99 2.8765 (18) 164
Symmetry code: (i) -x, -y+2, -z+1.
[Figure 2]
Figure 2
The packing, viewed along the a axis, with N—H⋯N hydrogen bonds shown as dotted lines.

Synthesis and crystallization

A solution of 2-(2-(5-phenyl-3-methyl-1H-pyrazol-1-yl)acet­yl)-N-p-tolyl­hydrazinecarbo­thio­amide (1.53 g; 4 mmol) in ethanol (50 ml) was added dropwise to 2 N sodium hydroxide solution (20 ml). The reaction mixture was then refluxed for 2 h, cooled, filtered and the filtrate was acidified with 2 N hydro­chloric acid solution. The separated solid was collected, washed with water and recrystallized from pure EtOH.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H19N5S
Mr 361.46
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 8.3386 (5), 15.5969 (9), 14.9334 (8)
β (°) 99.834 (1)
V3) 1913.65 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.46 × 0.39 × 0.26
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.87, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 35813, 4940, 3778
Rint 0.030
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.146, 1.10
No. of reflections 4940
No. of parameters 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.26
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-(3-Methylphenyl)-3-[(3-methyl-5-phenyl-1H-pyrazol-1-yl)methyl]-4,5-dihydro-1H-1,2,4-triazole-5-thione top
Crystal data top
C20H19N5SF(000) = 760
Mr = 361.46Dx = 1.255 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9947 reflections
a = 8.3386 (5) Åθ = 2.6–27.4°
b = 15.5969 (9) ŵ = 0.18 mm1
c = 14.9334 (8) ÅT = 296 K
β = 99.834 (1)°Block, colourless
V = 1913.65 (19) Å30.46 × 0.39 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4940 independent reflections
Radiation source: fine-focus sealed tube3778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.3333 pixels mm-1θmax = 28.7°, θmin = 1.9°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2120
Tmin = 0.87, Tmax = 0.95l = 2020
35813 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0824P)2 + 0.1767P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
4940 reflectionsΔρmax = 0.31 e Å3
236 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08990 (6)0.93018 (3)0.76368 (3)0.0686 (2)
N10.07577 (12)0.84839 (7)0.60041 (7)0.0418 (3)
N20.11285 (14)0.92049 (8)0.50918 (9)0.0530 (4)
N30.08851 (14)0.95325 (8)0.59569 (8)0.0512 (4)
N40.15498 (13)0.80095 (7)0.40792 (7)0.0472 (3)
N50.22539 (14)0.87806 (8)0.39760 (8)0.0509 (4)
C10.02584 (16)0.91209 (8)0.65356 (10)0.0466 (4)
C20.01244 (15)0.85699 (8)0.51410 (9)0.0441 (4)
C30.20542 (14)0.78874 (8)0.63013 (8)0.0402 (3)
C40.36005 (15)0.80791 (9)0.61541 (9)0.0472 (4)
C50.48769 (17)0.75124 (11)0.64334 (10)0.0533 (4)
C60.45477 (19)0.67623 (10)0.68636 (10)0.0575 (5)
C70.29975 (19)0.65818 (9)0.70153 (11)0.0587 (5)
C80.17328 (17)0.71456 (9)0.67361 (10)0.0509 (4)
C90.6570 (2)0.77113 (16)0.62645 (17)0.0902 (8)
C100.00265 (16)0.79791 (10)0.43684 (10)0.0519 (4)
C110.37196 (18)0.85957 (10)0.37764 (10)0.0536 (4)
C120.3940 (2)0.77082 (11)0.37496 (11)0.0591 (5)
C130.25369 (18)0.73447 (9)0.39460 (9)0.0508 (4)
C140.4856 (2)0.93002 (13)0.36231 (15)0.0772 (7)
C150.20869 (18)0.64418 (9)0.40348 (10)0.0536 (4)
C160.3127 (2)0.59089 (11)0.46143 (13)0.0693 (6)
C170.2728 (3)0.50589 (13)0.47188 (16)0.0860 (8)
C180.1284 (3)0.47360 (13)0.42448 (17)0.0864 (8)
C190.0251 (2)0.52531 (13)0.36800 (14)0.0785 (7)
C200.0639 (2)0.61012 (12)0.35723 (11)0.0656 (5)
H30.141201.002400.606000.0610*
H40.379200.858900.586700.0570*
H60.538400.637500.705300.0690*
H70.280100.607600.730800.0700*
H80.068700.702600.684000.0610*
H9A0.716000.718600.623700.1350*
H9B0.712300.806100.675000.1350*
H9C0.650400.801300.569900.1350*
H10A0.023500.739800.454800.0620*
H10B0.086500.813100.386000.0620*
H120.485400.742100.362400.0710*
H14A0.595300.913400.386300.1160*
H14B0.458700.981100.392500.1160*
H14C0.475600.940900.298300.1160*
H160.409800.612600.493300.0830*
H170.342800.470500.510600.1030*
H180.101700.416300.431200.1040*
H190.072100.503300.336600.0940*
H200.007500.644900.318600.0790*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0942 (3)0.0526 (3)0.0590 (3)0.0063 (2)0.0135 (2)0.0143 (2)
N10.0412 (5)0.0361 (5)0.0482 (6)0.0022 (4)0.0082 (4)0.0000 (4)
N20.0463 (6)0.0538 (7)0.0604 (7)0.0110 (5)0.0133 (5)0.0060 (5)
N30.0516 (6)0.0418 (6)0.0639 (7)0.0090 (5)0.0201 (5)0.0011 (5)
N40.0472 (6)0.0481 (6)0.0462 (6)0.0087 (5)0.0078 (4)0.0016 (4)
N50.0524 (6)0.0498 (7)0.0513 (6)0.0098 (5)0.0114 (5)0.0030 (5)
C10.0487 (7)0.0339 (6)0.0601 (8)0.0036 (5)0.0179 (6)0.0014 (5)
C20.0378 (6)0.0455 (7)0.0495 (7)0.0043 (5)0.0089 (5)0.0028 (5)
C30.0423 (6)0.0348 (6)0.0425 (6)0.0004 (5)0.0046 (5)0.0011 (4)
C40.0456 (7)0.0466 (7)0.0486 (7)0.0031 (5)0.0062 (5)0.0065 (5)
C50.0430 (7)0.0669 (9)0.0490 (7)0.0044 (6)0.0052 (5)0.0031 (6)
C60.0579 (8)0.0548 (8)0.0562 (8)0.0165 (7)0.0002 (6)0.0037 (6)
C70.0686 (9)0.0406 (7)0.0651 (9)0.0015 (7)0.0061 (7)0.0111 (6)
C80.0492 (7)0.0417 (7)0.0618 (8)0.0047 (6)0.0097 (6)0.0056 (6)
C90.0484 (9)0.1214 (18)0.1018 (15)0.0083 (10)0.0156 (9)0.0256 (13)
C100.0438 (7)0.0600 (8)0.0504 (7)0.0060 (6)0.0035 (5)0.0050 (6)
C110.0536 (8)0.0561 (8)0.0528 (7)0.0089 (6)0.0136 (6)0.0021 (6)
C120.0555 (8)0.0613 (9)0.0630 (9)0.0152 (7)0.0171 (7)0.0034 (7)
C130.0547 (8)0.0513 (8)0.0457 (7)0.0122 (6)0.0069 (6)0.0048 (5)
C140.0703 (11)0.0725 (12)0.0953 (14)0.0010 (9)0.0328 (10)0.0082 (10)
C150.0619 (8)0.0487 (8)0.0504 (7)0.0101 (6)0.0099 (6)0.0078 (6)
C160.0652 (10)0.0574 (9)0.0821 (12)0.0139 (8)0.0035 (8)0.0019 (8)
C170.0882 (14)0.0589 (11)0.1089 (16)0.0201 (10)0.0110 (11)0.0110 (10)
C180.0987 (15)0.0530 (10)0.1094 (16)0.0030 (10)0.0233 (12)0.0076 (10)
C190.0836 (12)0.0680 (11)0.0808 (12)0.0094 (10)0.0056 (9)0.0170 (9)
C200.0743 (10)0.0635 (10)0.0548 (8)0.0051 (8)0.0011 (7)0.0083 (7)
Geometric parameters (Å, º) top
S1—C11.6641 (15)C15—C201.390 (2)
N1—C11.3796 (17)C15—C161.391 (2)
N1—C21.3771 (17)C16—C171.382 (3)
N1—C31.4379 (16)C17—C181.383 (3)
N2—N31.3717 (18)C18—C191.362 (3)
N2—C21.2909 (18)C19—C201.378 (3)
N3—C11.3367 (18)C4—H40.9300
N4—N51.3586 (17)C6—H60.9300
N4—C101.4527 (18)C7—H70.9300
N4—C131.3595 (18)C8—H80.9300
N5—C111.3380 (19)C9—H9A0.9600
C2—C101.490 (2)C9—H9B0.9600
C3—C41.3774 (17)C9—H9C0.9600
C3—C81.3753 (19)C10—H10A0.9700
N3—H30.9100C10—H10B0.9700
C4—C51.392 (2)C12—H120.9300
C5—C91.508 (2)C14—H14A0.9600
C5—C61.385 (2)C14—H14B0.9600
C6—C71.379 (2)C14—H14C0.9600
C7—C81.382 (2)C16—H160.9300
C11—C141.494 (2)C17—H170.9300
C11—C121.398 (2)C18—H180.9300
C12—C131.376 (2)C19—H190.9300
C13—C151.469 (2)C20—H200.9300
C1—N1—C2107.63 (11)C17—C18—C19120.29 (19)
C1—N1—C3124.98 (11)C18—C19—C20120.30 (18)
C2—N1—C3127.24 (10)C15—C20—C19120.69 (16)
N3—N2—C2104.00 (12)C3—C4—H4120.00
N2—N3—C1113.86 (12)C5—C4—H4120.00
N5—N4—C10119.55 (11)C5—C6—H6120.00
N5—N4—C13111.99 (11)C7—C6—H6120.00
C10—N4—C13128.30 (12)C6—C7—H7120.00
N4—N5—C11105.27 (12)C8—C7—H7120.00
S1—C1—N1127.82 (10)C3—C8—H8121.00
S1—C1—N3129.10 (11)C7—C8—H8121.00
N1—C1—N3103.06 (12)C5—C9—H9A109.00
N1—C2—N2111.44 (12)C5—C9—H9B109.00
N1—C2—C10124.99 (11)C5—C9—H9C109.00
N2—C2—C10123.46 (13)H9A—C9—H9B109.00
N1—C3—C4119.03 (11)H9A—C9—H9C109.00
N1—C3—C8119.55 (11)H9B—C9—H9C110.00
C4—C3—C8121.41 (12)N4—C10—H10A109.00
N2—N3—H3118.00N4—C10—H10B109.00
C1—N3—H3127.00C2—C10—H10A109.00
C3—C4—C5120.21 (13)C2—C10—H10B109.00
C6—C5—C9121.12 (16)H10A—C10—H10B108.00
C4—C5—C6118.27 (13)C11—C12—H12127.00
C4—C5—C9120.61 (16)C13—C12—H12127.00
C5—C6—C7120.96 (14)C11—C14—H14A109.00
C6—C7—C8120.60 (14)C11—C14—H14B109.00
C3—C8—C7118.53 (13)C11—C14—H14C109.00
N4—C10—C2112.47 (11)H14A—C14—H14B109.00
C12—C11—C14129.35 (15)H14A—C14—H14C110.00
N5—C11—C14120.20 (14)H14B—C14—H14C109.00
N5—C11—C12110.45 (14)C15—C16—H16120.00
C11—C12—C13106.33 (14)C17—C16—H16120.00
N4—C13—C12105.96 (13)C16—C17—H17120.00
N4—C13—C15123.20 (13)C18—C17—H17120.00
C12—C13—C15130.82 (14)C17—C18—H18120.00
C13—C15—C16119.15 (14)C19—C18—H18120.00
C16—C15—C20118.49 (14)C18—C19—H19120.00
C13—C15—C20122.35 (14)C20—C19—H19120.00
C15—C16—C17120.45 (17)C15—C20—H20120.00
C16—C17—C18119.8 (2)C19—C20—H20120.00
C2—N1—C1—S1178.75 (11)N2—C2—C10—N4117.70 (14)
C2—N1—C1—N30.48 (14)N1—C3—C4—C5179.89 (12)
C3—N1—C1—S15.43 (19)C8—C3—C4—C51.0 (2)
C3—N1—C1—N3176.31 (11)N1—C3—C8—C7179.98 (13)
C1—N1—C2—N20.05 (16)C4—C3—C8—C70.9 (2)
C1—N1—C2—C10176.41 (12)C3—C4—C5—C60.4 (2)
C3—N1—C2—N2175.76 (12)C3—C4—C5—C9179.21 (16)
C3—N1—C2—C107.9 (2)C4—C5—C6—C70.3 (2)
C1—N1—C3—C493.20 (15)C9—C5—C6—C7179.87 (17)
C1—N1—C3—C885.91 (16)C5—C6—C7—C80.3 (2)
C2—N1—C3—C481.80 (16)C6—C7—C8—C30.3 (2)
C2—N1—C3—C899.09 (15)N5—C11—C12—C130.20 (18)
C2—N2—N3—C10.74 (15)C14—C11—C12—C13179.49 (17)
N3—N2—C2—N10.39 (15)C11—C12—C13—N40.06 (16)
N3—N2—C2—C10176.03 (12)C11—C12—C13—C15178.41 (14)
N2—N3—C1—S1179.00 (11)N4—C13—C15—C16125.72 (16)
N2—N3—C1—N10.76 (15)N4—C13—C15—C2053.1 (2)
C10—N4—N5—C11175.47 (12)C12—C13—C15—C1652.5 (2)
C13—N4—N5—C110.21 (15)C12—C13—C15—C20128.71 (18)
N5—N4—C10—C245.23 (16)C13—C15—C16—C17179.33 (17)
C13—N4—C10—C2129.67 (14)C20—C15—C16—C170.5 (3)
N5—N4—C13—C120.09 (15)C13—C15—C20—C19179.33 (15)
N5—N4—C13—C15178.71 (12)C16—C15—C20—C190.6 (2)
C10—N4—C13—C12175.12 (13)C15—C16—C17—C180.1 (3)
C10—N4—C13—C153.5 (2)C16—C17—C18—C190.4 (4)
N4—N5—C11—C120.25 (16)C17—C18—C19—C200.3 (3)
N4—N5—C11—C14179.47 (14)C18—C19—C20—C150.1 (3)
N1—C2—C10—N466.37 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N5i0.911.992.8765 (18)164
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M. & Albayati, M. R. (2015). Acta Cryst. E71, o417.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds