organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Iodo-N-(phenyl­sulfon­yl)benzamide hemihydrate

aDepartment of Chemistry, University College of Science, Tumkur University, Tumkur, 572103, India, bDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru-6, India, cInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru-6, India, and dDepartment of Chemistry, Science College, An-Najah National University, PO Box, 7, Nablus, Palestinian Territories
*Correspondence e-mail: naveen@ioe.uni-mysore.ac.in, khalil.i@najah.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 January 2017; accepted 29 January 2017; online 3 February 2017)

In the title hemihydrate, 2C13H10INO3S·H2O, there are two organic mol­ecules (A and B) and one water mol­ecule in the asymmetric unit. The benzene rings are inclined to one another by 77.98 (1)° in A and 79.81 (9)° in B. The A and B mol­ecules are connected through a water mol­ecule via N—H⋯O and O—H⋯O hydrogen bonds. In the extended structure, the A mol­ecules are inter­linked via two water mol­ecules through O—H⋯O hydrogen bonds to generate R44(12) loops. Further, the A and B mol­ecules are linked by N—H⋯O hydrogen bonds, and thus an [010] chain is formed. Several C—H⋯O inter­actions extend the chains into sheet lying parallel to the ab-plane. The sheets are further extended into a three dimensional architecture via a C—H⋯π inter­action.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In continuation of our work on the synthesis and crystal structures of N-(phenyl­sulfon­yl)aryl­amides (Suchetan et al., 2009[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3156.], 2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1772.]; Gowda et al., 2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.]), the title compound was synthesized and we report herein on its crystal structure.

The title hemihydrate (Fig. 1[link]) contains two mol­ecules (A and B) in the asymmetric unit. The benzene rings are inclined to one another by 77.98 (1)° in A and 79.81 (9)° in B. The A and B mol­ecules are inter­connected through a water mol­ecule via N1—HN1⋯O7, O7—H1O7⋯O6 and O7—H1O7⋯O5 hydrogen bonds (Table 1[link]). The bifurcated O7—H1O7⋯(O5,O6) hydrogen bonds form R12(6) rings (Fig. 1[link]). The A mol­ecules in the neighboring asymmetric units are inter­linked via two water mol­ecules through O7—H2O7⋯O1ii (Table 1[link]) hydrogen bonds to form an R44(12) loop. Further, the A and B mol­ecules in adjacent R44(12) ring motifs are linked by N2—HN2⋯O2i (Table 1[link]) hydrogen bonds, and thus, a chain is observed parallel to the b-axis direction (Fig. 2[link]). Further, C9—H9⋯O7, C18—H18⋯O4iii and C26—H26⋯O2i (Table 1[link]) inter­actions extend the chains into a sheets in the ab plane (Fig. 3[link]). The sheets are further extended into a three-dimensional architecture via C17—H17⋯πiv inter­actions involving the π electrons of the iodo­benzene ring of mol­ecule B (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the iodo­benzene ring (C21–C26) of mol­ecule B.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN2⋯O2i 0.84 2.12 2.9271 160
N1—HN1⋯O7 0.81 2.01 2.7894 163
O7—H2O7⋯O1ii 0.82 2.09 2.8507 154
O7—H1O7⋯O5 0.83 2.32 2.8283 121
O7—H1O7⋯O6 0.83 2.23 2.9898 152
C9—H9⋯O7 0.95 2.37 3.2680 158
C18—H18⋯O4iii 0.95 2.58 3.429 (5) 149
C26—H26⋯O2i 0.95 2.59 3.376 (5) 140
C17—H17⋯Cgiv 0.95 2.88 3.7194 148
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) x-1, y, z.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The N—H⋯O and O—H⋯O hydrogen bonds (dashed lines, see Table 1[link]) are also shown.
[Figure 2]
Figure 2
Generation of chains along [010] via several N—H⋯O and O—H⋯O hydrogen bonds (dashed lines, see Table 1[link]).
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound, showing the N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds (dashed lines; see Table 1[link]). For clarity, only H atoms involved in hydrogen bonding have been included.

Synthesis and crystallization

The title compound was prepared by refluxing a mixture of 4-iodo­benzoic acid (3 mmol), benzene­sulfonamide (3 mmol) and phospho­rus oxychloride (7 ml) for 3 h on a water bath. The resultant mixture was cooled and poured into ice-cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was later filtered, dried and recrystallized (m.p. = 460 K). Colourless prisms were obtained by slow evaporation of a solution of the compound in methanol (with a few drops of added water).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 2C13H10INO3S·H2O
Mr 792.37
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 10.6311 (5), 11.0403 (5), 12.0340 (6)
α, β, γ (°) 97.594 (2), 92.173 (2), 99.423 (1)
V3) 1378.59 (11)
Z 2
Radiation type Cu Kα
μ (mm−1) 19.75
Crystal size (mm) 0.22 × 0.11 × 0.08
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.111, 0.206
No. of measured, independent and observed [I > 2σ(I)] reflections 14470, 4556, 4351
Rint 0.052
(sin θ/λ)max−1) 0.585
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.07
No. of reflections 4556
No. of parameters 368
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.23, −1.18
Computer programs: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/4 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXT2016/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016/4 (Sheldrick, 2015b).

4-Iodo-N-(phenylsulfonyl)benzamide hemihydrate top
Crystal data top
2C13H10INO3S·H2OF(000) = 772
Mr = 792.37Prism
Triclinic, P1Dx = 1.909 Mg m3
Hall symbol: -P 1Melting point: 460 K
a = 10.6311 (5) ÅCu Kα radiation, λ = 1.54178 Å
b = 11.0403 (5) ÅCell parameters from 175 reflections
c = 12.0340 (6) Åθ = 3.7–64.5°
α = 97.594 (2)°µ = 19.75 mm1
β = 92.173 (2)°T = 173 K
γ = 99.423 (1)°Prism, colourless
V = 1378.59 (11) Å30.22 × 0.11 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
4351 reflections with I > 2σ(I)
Radiation source: CuKαRint = 0.052
Graphite monochromatorθmax = 64.5°, θmin = 3.7°
phi and φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.111, Tmax = 0.206l = 1312
14470 measured reflections1 standard reflections every 2 reflections
4556 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0797P)2 + 0.2627P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4556 reflectionsΔρmax = 1.23 e Å3
368 parametersΔρmin = 1.18 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.90191 (2)0.36213 (2)0.13476 (2)0.02152 (13)
I20.23891 (2)0.22303 (3)0.99991 (2)0.02462 (14)
S10.36863 (8)0.18597 (8)0.38822 (7)0.0102 (2)
S20.77577 (8)0.20298 (8)0.46211 (7)0.0113 (2)
O50.7584 (3)0.2982 (3)0.3964 (2)0.0148 (6)
O70.5953 (3)0.4761 (2)0.3928 (2)0.0171 (6)
O30.4363 (2)0.0618 (2)0.1777 (2)0.0156 (6)
O20.3857 (3)0.0650 (2)0.4095 (2)0.0163 (6)
O10.3821 (3)0.2831 (2)0.4811 (2)0.0140 (6)
O60.6832 (3)0.4039 (2)0.6098 (2)0.0168 (6)
O40.7648 (3)0.0778 (3)0.4096 (2)0.0170 (6)
N10.4739 (3)0.2383 (3)0.3017 (3)0.0112 (7)
N20.6669 (3)0.1963 (3)0.5582 (3)0.0122 (6)
C150.9731 (4)0.3725 (4)0.5712 (3)0.0126 (7)
H150.9269160.4344220.5524240.015*
C10.2180 (3)0.1746 (3)0.3169 (3)0.0125 (7)
C140.9236 (4)0.2471 (3)0.5399 (3)0.0116 (7)
C240.3720 (4)0.2426 (4)0.8768 (3)0.0164 (8)
C120.7210 (4)0.1779 (4)0.0283 (3)0.0173 (8)
H120.7435470.1213320.0876570.021*
C100.7450 (4)0.3854 (4)0.0721 (3)0.0154 (8)
H100.7841760.4701250.0810320.019*
C200.6363 (3)0.2989 (3)0.6239 (3)0.0120 (7)
C210.5443 (3)0.2734 (3)0.7113 (3)0.0115 (7)
C80.5987 (4)0.2195 (4)0.1336 (3)0.0124 (8)
C161.0901 (4)0.4050 (4)0.6297 (3)0.0151 (8)
H161.1251220.4900560.6517770.018*
C70.4972 (3)0.1648 (3)0.2042 (3)0.0115 (7)
C190.9877 (4)0.1553 (4)0.5686 (3)0.0154 (8)
H190.9512070.0703830.5482740.018*
C230.4521 (4)0.3553 (4)0.8779 (3)0.0176 (8)
H230.4483270.4218480.9357800.021*
C250.3778 (4)0.1433 (4)0.7931 (3)0.0148 (8)
H250.3237120.0656930.7927430.018*
C110.7758 (4)0.3025 (4)0.0153 (3)0.0155 (8)
C60.1536 (4)0.0613 (4)0.2665 (3)0.0186 (8)
H60.1894540.0115850.2702130.022*
C90.6569 (4)0.3438 (4)0.1463 (3)0.0152 (8)
H90.6358210.4004680.2063410.018*
C220.5372 (4)0.3713 (4)0.7955 (3)0.0150 (8)
H220.5910480.4490340.7960670.018*
C171.1573 (4)0.3134 (4)0.6568 (3)0.0176 (8)
H171.2390030.3364320.6956190.021*
C20.1678 (4)0.2839 (4)0.3122 (3)0.0194 (8)
H20.2135000.3615120.3474600.023*
C260.4635 (4)0.1603 (4)0.7114 (3)0.0137 (8)
H260.4677450.0935340.6538650.016*
C181.1058 (4)0.1885 (4)0.6273 (4)0.0192 (9)
H181.1511870.1264740.6472650.023*
C130.6336 (4)0.1376 (4)0.0459 (3)0.0162 (8)
H130.5961260.0524050.0374620.019*
C40.0152 (4)0.1618 (5)0.2050 (4)0.0301 (11)
H40.0959700.1570340.1666200.036*
C30.0513 (5)0.2767 (5)0.2559 (4)0.0297 (11)
H30.0161100.3497610.2514790.036*
C50.0360 (4)0.0544 (5)0.2103 (4)0.0287 (10)
H50.0095410.0234860.1753480.034*
H2O70.578 (6)0.543 (3)0.420 (5)0.040 (16)*
H1O70.643 (4)0.457 (5)0.441 (4)0.026 (14)*
HN20.637 (4)0.127 (3)0.577 (4)0.017 (11)*
HN10.507 (5)0.310 (3)0.315 (5)0.030 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01479 (19)0.0317 (2)0.0166 (2)0.00216 (12)0.00650 (12)0.00403 (13)
I20.0180 (2)0.0412 (2)0.0176 (2)0.00979 (14)0.00791 (13)0.00722 (14)
S10.0087 (4)0.0085 (4)0.0127 (5)0.0003 (3)0.0025 (3)0.0011 (3)
S20.0082 (4)0.0102 (4)0.0149 (5)0.0008 (3)0.0027 (3)0.0013 (3)
O50.0111 (13)0.0200 (14)0.0142 (14)0.0009 (10)0.0017 (10)0.0072 (11)
O70.0195 (15)0.0094 (14)0.0214 (15)0.0017 (11)0.0022 (12)0.0003 (11)
O30.0157 (13)0.0102 (13)0.0189 (14)0.0015 (10)0.0041 (11)0.0020 (10)
O20.0188 (14)0.0127 (13)0.0193 (14)0.0051 (10)0.0038 (11)0.0053 (11)
O10.0148 (14)0.0138 (13)0.0116 (14)0.0010 (10)0.0021 (11)0.0011 (10)
O60.0174 (14)0.0099 (14)0.0212 (15)0.0022 (10)0.0016 (11)0.0013 (11)
O40.0148 (14)0.0160 (14)0.0175 (14)0.0010 (10)0.0057 (11)0.0047 (11)
N10.0099 (16)0.0115 (17)0.0101 (16)0.0021 (12)0.0021 (12)0.0012 (13)
N20.0104 (15)0.0081 (16)0.0185 (17)0.0000 (12)0.0048 (12)0.0043 (13)
C150.0119 (18)0.0126 (19)0.0138 (19)0.0015 (14)0.0044 (14)0.0035 (15)
C10.0090 (18)0.0163 (19)0.0113 (18)0.0009 (14)0.0050 (14)0.0012 (14)
C140.0087 (18)0.0136 (18)0.0112 (18)0.0016 (14)0.0029 (14)0.0014 (15)
C240.014 (2)0.027 (2)0.012 (2)0.0100 (16)0.0006 (15)0.0041 (16)
C120.016 (2)0.020 (2)0.0141 (19)0.0016 (16)0.0046 (15)0.0032 (16)
C100.015 (2)0.016 (2)0.014 (2)0.0032 (15)0.0059 (15)0.0028 (15)
C200.0074 (17)0.0136 (19)0.0149 (19)0.0012 (14)0.0026 (14)0.0033 (14)
C210.0065 (17)0.0140 (18)0.0140 (19)0.0022 (14)0.0023 (14)0.0019 (14)
C80.0099 (18)0.0134 (18)0.0136 (19)0.0026 (14)0.0015 (14)0.0004 (15)
C160.0136 (19)0.0151 (19)0.016 (2)0.0016 (15)0.0029 (15)0.0044 (15)
C70.0085 (17)0.0123 (19)0.0131 (19)0.0029 (14)0.0016 (14)0.0010 (15)
C190.0120 (19)0.0122 (18)0.022 (2)0.0012 (14)0.0077 (15)0.0030 (15)
C230.016 (2)0.021 (2)0.014 (2)0.0039 (15)0.0012 (15)0.0030 (15)
C250.0134 (19)0.0140 (19)0.018 (2)0.0022 (15)0.0025 (15)0.0066 (15)
C110.0116 (18)0.022 (2)0.0141 (19)0.0011 (15)0.0025 (15)0.0065 (16)
C60.015 (2)0.021 (2)0.017 (2)0.0025 (15)0.0013 (15)0.0016 (16)
C90.0150 (19)0.016 (2)0.0139 (19)0.0038 (15)0.0050 (15)0.0016 (15)
C220.0132 (19)0.0127 (19)0.017 (2)0.0001 (14)0.0033 (15)0.0005 (15)
C170.0081 (18)0.027 (2)0.019 (2)0.0012 (15)0.0022 (15)0.0079 (16)
C20.019 (2)0.021 (2)0.020 (2)0.0065 (16)0.0074 (16)0.0053 (17)
C260.0114 (18)0.0141 (19)0.016 (2)0.0041 (14)0.0030 (15)0.0016 (15)
C180.013 (2)0.022 (2)0.024 (2)0.0056 (16)0.0046 (16)0.0071 (17)
C130.0110 (18)0.018 (2)0.017 (2)0.0016 (14)0.0012 (15)0.0022 (15)
C40.013 (2)0.053 (3)0.023 (2)0.001 (2)0.0009 (17)0.009 (2)
C30.023 (2)0.037 (3)0.035 (3)0.014 (2)0.003 (2)0.013 (2)
C50.017 (2)0.040 (3)0.024 (2)0.0112 (19)0.0010 (18)0.0030 (19)
Geometric parameters (Å, º) top
I1—C112.099 (4)C10—H100.9500
I2—C242.094 (4)C20—C211.485 (6)
S1—O11.428 (3)C21—C221.395 (6)
S1—O21.432 (3)C21—C261.396 (6)
S1—N11.645 (3)C8—C91.396 (6)
S1—C11.766 (4)C8—C131.399 (6)
S2—O41.426 (3)C8—C71.497 (6)
S2—O51.427 (3)C16—C171.396 (6)
S2—N21.666 (3)C16—H160.9500
S2—C141.761 (4)C19—C181.388 (6)
O7—H2O70.82 (2)C19—H190.9500
O7—H1O70.83 (2)C23—C221.376 (6)
O3—C71.210 (5)C23—H230.9500
O6—C201.220 (5)C25—C261.376 (6)
N1—C71.390 (5)C25—H250.9500
N1—HN10.81 (3)C6—C51.385 (6)
N2—C201.386 (5)C6—H60.9500
N2—HN20.84 (3)C9—H90.9500
C15—C161.375 (6)C22—H220.9500
C15—C141.394 (5)C17—C181.391 (6)
C15—H150.9500C17—H170.9500
C1—C61.375 (6)C2—C31.375 (7)
C1—C21.404 (6)C2—H20.9500
C14—C191.383 (5)C26—H260.9500
C24—C231.387 (6)C18—H180.9500
C24—C251.398 (6)C13—H130.9500
C12—C131.376 (6)C4—C51.392 (7)
C12—C111.389 (6)C4—C31.397 (7)
C12—H120.9500C4—H40.9500
C10—C91.384 (6)C3—H30.9500
C10—C111.385 (6)C5—H50.9500
O1—S1—O2118.27 (17)O3—C7—N1120.8 (3)
O1—S1—N1104.13 (17)O3—C7—C8122.0 (3)
O2—S1—N1110.25 (17)N1—C7—C8117.2 (3)
O1—S1—C1109.10 (17)C14—C19—C18119.3 (4)
O2—S1—C1108.84 (17)C14—C19—H19120.3
N1—S1—C1105.46 (17)C18—C19—H19120.3
O4—S2—O5120.03 (17)C22—C23—C24120.3 (4)
O4—S2—N2103.98 (16)C22—C23—H23119.9
O5—S2—N2109.06 (16)C24—C23—H23119.9
O4—S2—C14109.29 (17)C26—C25—C24118.7 (4)
O5—S2—C14108.55 (17)C26—C25—H25120.7
N2—S2—C14104.88 (17)C24—C25—H25120.7
H2O7—O7—H1O7105 (6)C10—C11—C12120.9 (4)
C7—N1—S1121.4 (3)C10—C11—I1121.1 (3)
C7—N1—HN1121 (4)C12—C11—I1118.0 (3)
S1—N1—HN1117 (4)C1—C6—C5119.3 (4)
C20—N2—S2124.3 (3)C1—C6—H6120.3
C20—N2—HN2116 (3)C5—C6—H6120.3
S2—N2—HN2119 (3)C10—C9—C8120.6 (4)
C16—C15—C14118.9 (4)C10—C9—H9119.7
C16—C15—H15120.6C8—C9—H9119.7
C14—C15—H15120.6C23—C22—C21120.1 (4)
C6—C1—C2121.6 (4)C23—C22—H22120.0
C6—C1—S1120.2 (3)C21—C22—H22120.0
C2—C1—S1118.3 (3)C18—C17—C16120.6 (4)
C19—C14—C15121.6 (4)C18—C17—H17119.7
C19—C14—S2118.6 (3)C16—C17—H17119.7
C15—C14—S2119.8 (3)C3—C2—C1118.9 (4)
C23—C24—C25120.5 (4)C3—C2—H2120.5
C23—C24—I2119.4 (3)C1—C2—H2120.5
C25—C24—I2120.0 (3)C25—C26—C21121.4 (4)
C13—C12—C11119.1 (4)C25—C26—H26119.3
C13—C12—H12120.4C21—C26—H26119.3
C11—C12—H12120.4C19—C18—C17119.5 (4)
C9—C10—C11119.5 (4)C19—C18—H18120.3
C9—C10—H10120.2C17—C18—H18120.3
C11—C10—H10120.2C12—C13—C8121.3 (4)
O6—C20—N2121.1 (3)C12—C13—H13119.3
O6—C20—C21122.6 (3)C8—C13—H13119.3
N2—C20—C21116.3 (3)C5—C4—C3120.5 (4)
C22—C21—C26119.1 (4)C5—C4—H4119.8
C22—C21—C20116.8 (3)C3—C4—H4119.8
C26—C21—C20124.1 (3)C2—C3—C4119.9 (4)
C9—C8—C13118.5 (4)C2—C3—H3120.0
C9—C8—C7125.7 (3)C4—C3—H3120.0
C13—C8—C7115.8 (3)C6—C5—C4119.8 (4)
C15—C16—C17120.1 (4)C6—C5—H5120.1
C15—C16—H16119.9C4—C5—H5120.1
C17—C16—H16119.9
O1—S1—N1—C7174.5 (3)C15—C14—C19—C181.7 (6)
O2—S1—N1—C746.7 (3)S2—C14—C19—C18178.3 (3)
C1—S1—N1—C770.6 (3)C25—C24—C23—C221.0 (6)
O4—S2—N2—C20174.6 (3)I2—C24—C23—C22177.8 (3)
O5—S2—N2—C2045.4 (3)C23—C24—C25—C260.7 (6)
C14—S2—N2—C2070.7 (3)I2—C24—C25—C26178.0 (3)
O1—S1—C1—C6146.8 (3)C9—C10—C11—C121.1 (6)
O2—S1—C1—C616.4 (4)C9—C10—C11—I1176.9 (3)
N1—S1—C1—C6101.9 (3)C13—C12—C11—C101.0 (6)
O1—S1—C1—C234.0 (4)C13—C12—C11—I1177.1 (3)
O2—S1—C1—C2164.4 (3)C2—C1—C6—C50.4 (6)
N1—S1—C1—C277.3 (3)S1—C1—C6—C5179.5 (3)
C16—C15—C14—C191.5 (6)C11—C10—C9—C80.2 (6)
C16—C15—C14—S2178.5 (3)C13—C8—C9—C101.4 (6)
O4—S2—C14—C1918.8 (3)C7—C8—C9—C10176.6 (4)
O5—S2—C14—C19151.4 (3)C24—C23—C22—C210.9 (6)
N2—S2—C14—C1992.1 (3)C26—C21—C22—C230.6 (5)
O4—S2—C14—C15161.2 (3)C20—C21—C22—C23178.6 (3)
O5—S2—C14—C1528.6 (4)C15—C16—C17—C181.5 (6)
N2—S2—C14—C1587.8 (3)C6—C1—C2—C30.1 (6)
S2—N2—C20—O64.8 (5)S1—C1—C2—C3179.2 (3)
S2—N2—C20—C21175.2 (2)C24—C25—C26—C210.5 (6)
O6—C20—C21—C2215.9 (5)C22—C21—C26—C250.4 (5)
N2—C20—C21—C22164.2 (3)C20—C21—C26—C25178.3 (3)
O6—C20—C21—C26162.1 (3)C14—C19—C18—C170.3 (6)
N2—C20—C21—C2617.9 (5)C16—C17—C18—C191.3 (6)
C14—C15—C16—C170.1 (6)C11—C12—C13—C80.3 (6)
S1—N1—C7—O33.4 (5)C9—C8—C13—C121.5 (6)
S1—N1—C7—C8177.6 (3)C7—C8—C13—C12176.7 (3)
C9—C8—C7—O3167.6 (4)C1—C2—C3—C40.4 (7)
C13—C8—C7—O310.4 (5)C5—C4—C3—C20.5 (7)
C9—C8—C7—N111.4 (5)C1—C6—C5—C40.3 (6)
C13—C8—C7—N1170.6 (3)C3—C4—C5—C60.2 (7)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the iodobenzene ring (C21–C26) of molecule B.
D—H···AD—HH···AD···AD—H···A
N2—HN2···O2i0.842.122.9271160
N1—HN1···O70.812.012.7894163
O7—H2O7···O1ii0.822.092.8507154
O7—H1O7···O50.832.322.8283121
O7—H1O7···O60.832.232.9898152
C9—H9···O70.952.373.2680158
C18—H18···O4iii0.952.583.429 (5)149
C26—H26···O2i0.952.593.376 (5)140
C17—H17···Cgiv0.952.883.7194148
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1; (iv) x1, y, z.
 

Acknowledgements

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data.

References

First citationBruker (2009). APEX2, SADABS and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3156.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1772.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds