organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Chloro-6-nitro-1-[(1-octyl-1H-1,2,3-triazol-4-yl)meth­yl]-1H-indazole

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: dedah6211672@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 January 2017; accepted 27 January 2017; online 3 February 2017)

The asymmetric unit of the title compound, C18H23ClN6O2, consists of two independent mol­ecules differing primarily in the dihedral angles between the mean planes of the indazole and triazole moieties [78.50 (8) in one and 72.39 (7)° in the other]. One of the mol­ecules shows positional disorder of the terminal part of its octyl chain. In the crystal, C—H⋯X (X = Cl, N, O) hydrogen bonds and C—H⋯π and π-stacking inter­actions are observed: together these generate a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a continuation of our studies of indazole derivatives (Boulhaoua et al., 2016[Boulhaoua, M., Abdelahi, M. M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x160485.]), we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound consists of two independent mol­ecules having very similar conformations and so an ellipsoid plot of only one mol­ecule is shown (Fig. 1[link]). The primary differences between the two are a disorder in the C34–C35–C36 portion of one alkyl chain and different dihedral angles between the mean planes of the indazole and triazole rings, being 78.50 (8)° in the mol­ecule containing Cl1 and 72.39 (7)° in the other.

[Figure 1]
Figure 1
The C1 mol­ecule showing 50% probability ellipsoids.

As shown in Fig. 2[link], there are a number of different inter­molecular inter­actions. The C—H⋯X (X = Cl, N, O) hydrogen bonds as well as the C—H⋯π(ring) inter­actions are listed in Table 1[link]. In addition there are ππ stacking inter­actions between centrosymmetrically related indazole units [Cg1⋯Cg3 = 3.636 (2) Å, dihedral angle 0.53 (14)°]. The result is a three-dimensional supra­molecular network (Fig. 3[link]) in which the long alkyl chains tend to inter­calate but the segregation of `head' and `tail' portions is not as pronounced as in related mol­ecules (Boulhaoua et al., 2016[Boulhaoua, M., Abdelahi, M. M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x160485.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the N7/N8/C19/C24/C25, N10/N11/N12/C27/C28 and C19–C24 rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2i 0.98 (3) 2.62 (3) 3.348 (3) 132 (2)
C10—H10⋯N6ii 0.93 (3) 2.57 (3) 3.377 (3) 145 (2)
C26—H26A⋯O4iii 0.95 (3) 2.54 (3) 3.240 (3) 131 (2)
C26—H26B⋯Cl2iv 0.98 (3) 2.82 (3) 3.682 (3) 147 (2)
C28—H28⋯N12iv 0.92 (3) 2.45 (3) 3.298 (3) 152 (2)
C29—H29B⋯N11iv 1.05 (3) 2.63 (3) 3.594 (4) 153 (2)
C29—H29B⋯N12iv 1.05 (3) 2.65 (3) 3.476 (3) 135 (2)
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions [dotted lines: C—H⋯O, black; C—H⋯N, blue; C—H⋯Cl, green; C—H⋯π(ring), purple, π-stacking, orange].
[Figure 3]
Figure 3
Packing viewed along the c axis.

Synthesis and crystallization

To a solution of 3-chloro-6-nitro-1-(prop-2-yn-1-yl)-1H-indazole (0.3 g, 1.27 mmol) in ethanol (15 ml) was added 1-azido­octane (0.24 g, 1.53 mmol). The mixture was stirred under reflux for 48 h. After completion of reaction (monitored by TLC), the solution was concentrated and the residue was purified by column chromatography on silica gel by using a mixture (hexa­ne/ethyl acetate 9/1). Crystals were obtained when the solvent was allowed to evaporate. The solid product was purified by recrystallization from ethanol solution to afford colourless crystals in 70% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Carbon atoms C34–C36 are disordered over two closely spaced sites in a 0.52 (2):0.48 (2) ratio. The components of the disorder were refined subject to restraints that their geometries approximate that of the corresponding portion of the ordered alkyl chain. The hydrogen atoms attached to the disordered atoms were included as riding contributions in idealized positions. Trial refinements with the single-component data extracted from the full data set with TWINABS (Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.]) and with the full three-component data indicated that the former refinement was superior.

Table 2
Experimental details

Crystal data
Chemical formula C18H23ClN6O2
Mr 390.87
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 25.3512 (9), 14.9091 (5), 10.7525 (3)
β (°) 101.725 (2)
V3) 3979.3 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.91
Crystal size (mm) 0.12 × 0.12 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.80, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 22444, 7460, 5327
Rint 0.068
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.117, 1.09
No. of reflections 7460
No. of parameters 653
No. of restraints 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.28
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Chloro-6-nitro-1-[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-1H-indazole top
Crystal data top
C18H23ClN6O2F(000) = 1648
Mr = 390.87Dx = 1.305 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 25.3512 (9) ÅCell parameters from 9411 reflections
b = 14.9091 (5) Åθ = 3.6–70.1°
c = 10.7525 (3) ŵ = 1.91 mm1
β = 101.725 (2)°T = 150 K
V = 3979.3 (2) Å3Plate, colourless
Z = 80.12 × 0.12 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
7460 independent reflections
Radiation source: INCOATEC IµS micro-focus source5327 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.068
Detector resolution: 10.4167 pixels mm-1θmax = 70.2°, θmin = 3.5°
ω scansh = 3030
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1718
Tmin = 0.80, Tmax = 0.96l = 1312
22444 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: mixed
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0372P)2 + 1.7954P]
where P = (Fo2 + 2Fc2)/3
7460 reflections(Δ/σ)max = 0.001
653 parametersΔρmax = 0.19 e Å3
10 restraintsΔρmin = 0.28 e Å3
Special details top

Experimental. Analysis of 2946 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the monoclinic system and to consist of at least three components. With approximately 90% of the reflections indexed with the three major components, it was decided to use these for the structure determination. The raw data were processed using the multi-component version of SAINT under control of the three-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Carbons C34-C36 are disordered over two closely spaced sites in a 52:48 ratio. The components of the disorder were refined subject to restraints that their geometries approximate that of the corresponding portion of the ordered alkyl chain. The hydrogen atoms attached to the disordered atoms were included as riding contributions in idealized positions. Trial refinements with the single-component data extracted from the full data set with TWINABS and with the full 3-component data indicated that the former refinement was superior.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.06482 (3)0.05492 (5)0.71585 (6)0.0410 (2)
O11.08776 (9)0.06599 (14)0.0520 (2)0.0495 (6)
O21.04771 (9)0.05912 (13)0.00830 (17)0.0420 (5)
N11.02266 (9)0.17337 (15)0.54180 (19)0.0297 (5)
N21.01686 (9)0.18696 (14)0.41414 (19)0.0261 (5)
N31.06707 (9)0.00487 (16)0.0742 (2)0.0332 (6)
N40.85290 (9)0.19184 (14)0.17346 (19)0.0289 (5)
N50.84521 (10)0.18829 (17)0.2940 (2)0.0377 (6)
N60.89099 (10)0.21181 (16)0.3684 (2)0.0350 (6)
C11.03835 (10)0.11787 (16)0.3578 (2)0.0238 (6)
C21.04026 (10)0.10374 (17)0.2305 (2)0.0254 (6)
H21.0265 (10)0.1453 (18)0.163 (2)0.032 (7)*
C31.06481 (11)0.02509 (17)0.2070 (2)0.0272 (6)
C41.08714 (11)0.03768 (19)0.3007 (3)0.0311 (6)
H41.1042 (11)0.0894 (19)0.274 (3)0.038 (8)*
C51.08466 (11)0.02235 (19)0.4247 (3)0.0312 (6)
H51.0981 (11)0.0650 (18)0.487 (3)0.031 (7)*
C61.05969 (10)0.05621 (17)0.4539 (2)0.0262 (6)
C71.04850 (11)0.09668 (18)0.5652 (2)0.0288 (6)
C80.98327 (11)0.25993 (18)0.3518 (3)0.0295 (6)
H8A0.9824 (11)0.3072 (19)0.415 (3)0.040 (8)*
H8B1.0020 (11)0.2874 (17)0.289 (3)0.036 (8)*
C90.92765 (10)0.23026 (16)0.2950 (2)0.0256 (6)
C100.90359 (11)0.21735 (17)0.1714 (2)0.0289 (6)
H100.9156 (11)0.2263 (18)0.096 (3)0.040 (8)*
C110.80896 (12)0.1697 (2)0.0677 (3)0.0350 (7)
H11A0.7751 (12)0.2037 (19)0.081 (3)0.043 (8)*
H11B0.8189 (10)0.1895 (17)0.014 (3)0.033 (7)*
C120.79522 (12)0.0710 (2)0.0601 (3)0.0356 (7)
H12A0.8262 (12)0.037 (2)0.050 (3)0.045 (9)*
H12B0.7866 (11)0.0526 (18)0.143 (3)0.038 (8)*
C130.74781 (13)0.0525 (2)0.0495 (3)0.0376 (7)
H13A0.7182 (12)0.091 (2)0.033 (3)0.045 (9)*
H13B0.7571 (12)0.0748 (19)0.135 (3)0.049 (9)*
C140.73000 (14)0.0451 (2)0.0636 (3)0.0412 (7)
H14A0.7609 (13)0.084 (2)0.085 (3)0.052 (9)*
H14B0.6973 (13)0.050 (2)0.137 (3)0.053 (9)*
C150.71683 (13)0.0848 (2)0.0577 (3)0.0400 (7)
H15A0.6948 (12)0.036 (2)0.098 (3)0.055 (9)*
H15B0.7512 (13)0.094 (2)0.123 (3)0.058 (10)*
C160.68594 (13)0.1729 (2)0.0359 (3)0.0414 (7)
H16A0.6491 (11)0.1608 (18)0.026 (3)0.035 (8)*
H16B0.7052 (13)0.219 (2)0.011 (3)0.054 (9)*
C170.67661 (14)0.2152 (2)0.1587 (3)0.0484 (8)
H17A0.6599 (12)0.169 (2)0.205 (3)0.044 (9)*
H17B0.7125 (14)0.229 (2)0.219 (3)0.056 (10)*
C180.64275 (17)0.2996 (2)0.1374 (4)0.0583 (10)
H18A0.6599 (16)0.351 (3)0.089 (4)0.089 (13)*
H18B0.6072 (16)0.289 (2)0.078 (4)0.078 (13)*
H18C0.6357 (17)0.325 (3)0.218 (4)0.104 (15)*
Cl20.56098 (3)0.42012 (5)0.81890 (6)0.03704 (19)
O30.59263 (10)0.54356 (14)0.16175 (19)0.0541 (6)
O40.53884 (9)0.43426 (13)0.09351 (17)0.0422 (5)
N70.51073 (9)0.31204 (14)0.63903 (19)0.0279 (5)
N80.50277 (8)0.30233 (14)0.50996 (18)0.0253 (5)
N90.56383 (10)0.48075 (15)0.1790 (2)0.0343 (6)
N100.33838 (9)0.29026 (14)0.26015 (19)0.0275 (5)
N110.33042 (10)0.29952 (16)0.3790 (2)0.0347 (6)
N120.37630 (9)0.28032 (15)0.45646 (19)0.0304 (5)
C190.52779 (10)0.36914 (16)0.4569 (2)0.0237 (6)
C200.53062 (11)0.38525 (18)0.3310 (2)0.0262 (6)
H200.5130 (10)0.3491 (16)0.264 (2)0.022 (7)*
C210.55916 (11)0.46036 (17)0.3111 (2)0.0266 (6)
C220.58479 (11)0.51830 (18)0.4076 (2)0.0274 (6)
H220.6046 (11)0.5697 (19)0.388 (3)0.038 (8)*
C230.58208 (11)0.50056 (18)0.5310 (2)0.0268 (6)
H230.5977 (10)0.5392 (16)0.594 (2)0.021 (7)*
C240.55317 (10)0.42522 (17)0.5560 (2)0.0246 (6)
C250.54078 (10)0.38417 (17)0.6656 (2)0.0260 (6)
C260.46897 (11)0.22959 (18)0.4453 (3)0.0283 (6)
H26A0.4689 (11)0.1842 (19)0.507 (3)0.042 (8)*
H26B0.4874 (11)0.2060 (17)0.380 (3)0.032 (7)*
C270.41350 (10)0.25869 (16)0.3862 (2)0.0244 (6)
C280.38949 (11)0.26531 (18)0.2614 (2)0.0289 (6)
H280.3989 (11)0.2544 (17)0.184 (3)0.034 (7)*
C290.29440 (12)0.3054 (2)0.1510 (3)0.0321 (6)
H29A0.2593 (13)0.295 (2)0.177 (3)0.063 (10)*
H29B0.3003 (11)0.2555 (19)0.086 (3)0.042 (8)*
C300.29403 (14)0.3990 (2)0.0970 (3)0.0419 (8)
H30A0.2884 (13)0.444 (2)0.159 (3)0.058 (10)*
H30B0.3310 (12)0.4134 (18)0.073 (3)0.038 (8)*
C310.24855 (14)0.4069 (2)0.0213 (3)0.0468 (8)
H31A0.2146 (15)0.385 (2)0.001 (3)0.069 (11)*
H31B0.2576 (13)0.364 (2)0.094 (3)0.062 (10)*
C320.24006 (16)0.5007 (2)0.0759 (4)0.0534 (9)
H32A0.2791 (15)0.523 (2)0.103 (3)0.075 (11)*
H32B0.2112 (16)0.500 (2)0.159 (4)0.080 (12)*
C330.22209 (16)0.5683 (2)0.0135 (4)0.0559 (9)
H33A0.1953 (14)0.535 (2)0.064 (3)0.072 (11)*
H33B0.2549 (15)0.586 (2)0.089 (4)0.078 (12)*
C34A0.1940 (16)0.6549 (15)0.0388 (19)0.056 (3)0.52 (2)
H34A0.21760.68670.08730.068*0.52 (2)
H34B0.16040.63890.09950.068*0.52 (2)
C35A0.1797 (11)0.7196 (13)0.0590 (17)0.066 (3)0.52 (2)
H35A0.15920.68670.11370.079*0.52 (2)
H35B0.21340.74170.11380.079*0.52 (2)
C36A0.1466 (8)0.7993 (10)0.000 (2)0.087 (5)0.52 (2)
H36A0.13880.83820.06780.130*0.52 (2)
H36B0.16700.83320.05230.130*0.52 (2)
H36C0.11280.77820.05240.130*0.52 (2)
C34B0.1972 (17)0.6467 (17)0.069 (2)0.056 (3)0.48 (2)
H34C0.22490.67470.10970.068*0.48 (2)
H34D0.16790.62440.13740.068*0.48 (2)
C35B0.1749 (12)0.7166 (15)0.0098 (17)0.066 (3)0.48 (2)
H35C0.14840.68740.05270.079*0.48 (2)
H35D0.20460.73960.07640.079*0.48 (2)
C36B0.1480 (9)0.7950 (11)0.068 (2)0.087 (5)0.48 (2)
H36D0.13450.83740.01230.130*0.48 (2)
H36E0.17420.82520.10930.130*0.48 (2)
H36F0.11780.77300.13290.130*0.48 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0475 (5)0.0555 (5)0.0194 (3)0.0032 (4)0.0054 (3)0.0071 (3)
O10.0690 (16)0.0420 (13)0.0445 (13)0.0062 (11)0.0281 (11)0.0091 (10)
O20.0612 (15)0.0426 (13)0.0248 (10)0.0021 (10)0.0150 (10)0.0014 (9)
N10.0326 (14)0.0387 (14)0.0182 (11)0.0047 (10)0.0064 (10)0.0010 (10)
N20.0313 (13)0.0288 (12)0.0186 (11)0.0016 (10)0.0057 (9)0.0004 (9)
N30.0377 (15)0.0358 (14)0.0296 (13)0.0102 (11)0.0149 (11)0.0077 (11)
N40.0318 (14)0.0329 (13)0.0222 (11)0.0010 (10)0.0062 (10)0.0010 (9)
N50.0368 (15)0.0553 (16)0.0226 (12)0.0002 (12)0.0097 (11)0.0026 (11)
N60.0363 (15)0.0466 (15)0.0237 (12)0.0001 (11)0.0101 (11)0.0014 (10)
C10.0254 (15)0.0253 (14)0.0209 (13)0.0025 (11)0.0049 (11)0.0001 (11)
C20.0287 (15)0.0271 (15)0.0210 (13)0.0055 (11)0.0068 (11)0.0014 (11)
C30.0321 (16)0.0280 (15)0.0233 (13)0.0063 (12)0.0101 (12)0.0034 (11)
C40.0319 (17)0.0289 (15)0.0336 (15)0.0032 (12)0.0092 (13)0.0024 (12)
C50.0320 (17)0.0290 (16)0.0313 (15)0.0025 (12)0.0034 (13)0.0082 (13)
C60.0269 (15)0.0304 (15)0.0212 (13)0.0060 (11)0.0045 (11)0.0023 (11)
C70.0294 (16)0.0381 (16)0.0190 (13)0.0077 (12)0.0050 (11)0.0018 (11)
C80.0382 (17)0.0253 (15)0.0263 (14)0.0003 (12)0.0094 (13)0.0001 (12)
C90.0343 (16)0.0231 (13)0.0215 (13)0.0024 (11)0.0108 (12)0.0002 (11)
C100.0361 (17)0.0292 (15)0.0240 (14)0.0008 (12)0.0120 (12)0.0006 (11)
C110.0355 (18)0.0412 (18)0.0271 (15)0.0029 (14)0.0034 (13)0.0023 (13)
C120.0325 (18)0.0405 (18)0.0337 (16)0.0003 (14)0.0067 (13)0.0020 (13)
C130.0388 (19)0.0395 (18)0.0334 (16)0.0008 (14)0.0044 (14)0.0028 (13)
C140.039 (2)0.0444 (19)0.0408 (18)0.0004 (15)0.0092 (16)0.0059 (15)
C150.0365 (19)0.0447 (19)0.0383 (17)0.0018 (15)0.0068 (15)0.0027 (14)
C160.0348 (19)0.0390 (19)0.050 (2)0.0025 (14)0.0077 (16)0.0006 (15)
C170.040 (2)0.052 (2)0.052 (2)0.0006 (16)0.0043 (17)0.0060 (17)
C180.053 (3)0.049 (2)0.072 (3)0.0042 (19)0.011 (2)0.017 (2)
Cl20.0440 (4)0.0484 (4)0.0182 (3)0.0063 (3)0.0051 (3)0.0048 (3)
O30.0823 (18)0.0465 (13)0.0381 (12)0.0204 (12)0.0230 (12)0.0045 (10)
O40.0610 (15)0.0438 (13)0.0227 (10)0.0034 (10)0.0107 (10)0.0030 (9)
N70.0299 (13)0.0349 (13)0.0181 (11)0.0030 (10)0.0034 (9)0.0009 (9)
N80.0286 (13)0.0281 (12)0.0185 (10)0.0006 (9)0.0032 (9)0.0006 (9)
N90.0481 (16)0.0316 (13)0.0261 (12)0.0028 (11)0.0140 (12)0.0012 (11)
N100.0284 (13)0.0343 (13)0.0200 (11)0.0004 (10)0.0058 (10)0.0027 (9)
N110.0373 (15)0.0448 (15)0.0240 (12)0.0020 (11)0.0108 (11)0.0047 (10)
N120.0304 (14)0.0406 (14)0.0209 (11)0.0043 (10)0.0067 (10)0.0013 (10)
C190.0213 (14)0.0259 (14)0.0234 (13)0.0055 (11)0.0033 (11)0.0005 (11)
C200.0285 (16)0.0288 (15)0.0203 (13)0.0040 (12)0.0022 (12)0.0030 (11)
C210.0333 (16)0.0274 (14)0.0204 (13)0.0060 (12)0.0087 (11)0.0019 (11)
C220.0286 (16)0.0245 (15)0.0302 (14)0.0006 (12)0.0088 (12)0.0011 (12)
C230.0265 (16)0.0287 (15)0.0246 (14)0.0018 (11)0.0040 (12)0.0047 (12)
C240.0241 (15)0.0279 (14)0.0217 (13)0.0041 (11)0.0044 (11)0.0012 (11)
C250.0291 (15)0.0329 (15)0.0158 (12)0.0028 (12)0.0041 (11)0.0005 (11)
C260.0333 (16)0.0254 (15)0.0256 (14)0.0007 (12)0.0042 (12)0.0020 (12)
C270.0319 (16)0.0205 (13)0.0222 (13)0.0026 (11)0.0086 (11)0.0002 (10)
C280.0319 (17)0.0351 (16)0.0208 (14)0.0004 (12)0.0079 (12)0.0014 (12)
C290.0265 (17)0.0405 (17)0.0280 (15)0.0034 (13)0.0027 (12)0.0005 (13)
C300.046 (2)0.0394 (19)0.0379 (18)0.0046 (15)0.0015 (15)0.0012 (14)
C310.048 (2)0.049 (2)0.0387 (18)0.0039 (17)0.0029 (16)0.0066 (16)
C320.055 (2)0.050 (2)0.050 (2)0.0029 (17)0.0013 (19)0.0088 (17)
C330.052 (2)0.043 (2)0.067 (2)0.0033 (17)0.001 (2)0.0090 (18)
C34A0.039 (4)0.040 (4)0.085 (8)0.002 (3)0.000 (7)0.011 (6)
C35A0.039 (4)0.046 (3)0.110 (10)0.005 (3)0.006 (9)0.001 (7)
C36A0.043 (3)0.048 (3)0.162 (16)0.002 (2)0.006 (10)0.014 (8)
C34B0.039 (4)0.040 (4)0.085 (8)0.002 (3)0.000 (7)0.011 (6)
C35B0.039 (4)0.046 (3)0.110 (10)0.005 (3)0.006 (9)0.001 (7)
C36B0.043 (3)0.048 (3)0.162 (16)0.002 (2)0.006 (10)0.014 (8)
Geometric parameters (Å, º) top
Cl1—C71.706 (3)N8—C191.366 (3)
O1—N31.224 (3)N8—C261.467 (3)
O2—N31.227 (3)N9—C211.480 (3)
N1—C71.316 (3)N10—N111.340 (3)
N1—N21.366 (3)N10—C281.346 (3)
N2—C11.364 (3)N10—C291.463 (3)
N2—C81.458 (3)N11—N121.317 (3)
N3—C31.472 (3)N12—C271.361 (3)
N4—C101.345 (3)C19—C201.391 (3)
N4—N51.350 (3)C19—C241.404 (3)
N4—C111.459 (4)C20—C211.373 (4)
N5—N61.316 (3)C20—H200.94 (3)
N6—C91.364 (3)C21—C221.404 (4)
C1—C21.395 (3)C22—C231.368 (4)
C1—C61.407 (3)C22—H220.96 (3)
C2—C31.375 (4)C23—C241.397 (4)
C2—H20.96 (3)C23—H230.92 (3)
C3—C41.407 (4)C24—C251.419 (3)
C4—C51.367 (4)C26—C271.485 (4)
C4—H40.96 (3)C26—H26A0.95 (3)
C5—C61.397 (4)C26—H26B0.98 (3)
C5—H50.94 (3)C27—C281.360 (3)
C6—C71.419 (3)C28—H280.92 (3)
C8—C91.486 (4)C29—C301.511 (4)
C8—H8A0.98 (3)C29—H29A1.00 (3)
C8—H8B0.99 (3)C29—H29B1.05 (3)
C9—C101.359 (4)C30—C311.538 (4)
C10—H100.93 (3)C30—H30A0.98 (3)
C11—C121.511 (4)C30—H30B1.05 (3)
C11—H11A1.03 (3)C31—C321.515 (5)
C11—H11B1.00 (3)C31—H31A1.00 (3)
C12—C131.527 (4)C31—H31B1.07 (3)
C12—H12A0.96 (3)C32—C331.525 (5)
C12—H12B1.00 (3)C32—H32A1.14 (4)
C13—C141.523 (4)C32—H32B1.03 (4)
C13—H13A0.99 (3)C33—C34A1.526 (6)
C13—H13B1.04 (3)C33—C34B1.526 (6)
C14—C151.530 (4)C33—H33A1.08 (4)
C14—H14A1.04 (3)C33—H33B1.07 (4)
C14—H14B1.03 (3)C34A—C35A1.525 (5)
C15—C161.523 (4)C34A—H34A0.9900
C15—H15A1.07 (3)C34A—H34B0.9900
C15—H15B1.01 (3)C35A—C36A1.516 (5)
C16—C171.524 (4)C35A—H35A0.9900
C16—H16A1.05 (3)C35A—H35B0.9900
C16—H16B1.03 (3)C36A—H36A0.9800
C17—C181.514 (4)C36A—H36B0.9800
C17—H17A0.99 (3)C36A—H36C0.9800
C17—H17B1.02 (3)C34B—C35B1.525 (5)
C18—H18A1.06 (4)C34B—H34C0.9900
C18—H18B1.01 (4)C34B—H34D0.9900
C18—H18C0.99 (4)C35B—C36B1.516 (5)
Cl2—C251.709 (2)C35B—H35C0.9900
O3—N91.224 (3)C35B—H35D0.9900
O4—N91.221 (3)C36B—H36D0.9800
N7—C251.315 (3)C36B—H36E0.9800
N7—N81.369 (3)C36B—H36F0.9800
C7—N1—N2105.6 (2)N11—N12—C27108.8 (2)
C1—N2—N1111.3 (2)N8—C19—C20130.7 (2)
C1—N2—C8127.4 (2)N8—C19—C24107.3 (2)
N1—N2—C8120.4 (2)C20—C19—C24122.0 (2)
O1—N3—O2123.5 (2)C21—C20—C19115.2 (2)
O1—N3—C3118.0 (2)C21—C20—H20122.1 (15)
O2—N3—C3118.5 (2)C19—C20—H20122.7 (15)
C10—N4—N5110.6 (2)C20—C21—C22124.4 (2)
C10—N4—C11129.2 (2)C20—C21—N9117.7 (2)
N5—N4—C11120.2 (2)C22—C21—N9117.9 (2)
N6—N5—N4107.0 (2)C23—C22—C21119.4 (2)
N5—N6—C9108.8 (2)C23—C22—H22120.0 (17)
N2—C1—C2130.3 (2)C21—C22—H22120.6 (17)
N2—C1—C6107.2 (2)C22—C23—C24118.3 (3)
C2—C1—C6122.5 (2)C22—C23—H23119.7 (15)
C3—C2—C1114.6 (2)C24—C23—H23121.9 (15)
C3—C2—H2121.2 (15)C23—C24—C19120.7 (2)
C1—C2—H2124.2 (15)C23—C24—C25136.1 (2)
C2—C3—C4124.5 (2)C19—C24—C25103.3 (2)
C2—C3—N3117.5 (2)N7—C25—C24112.8 (2)
C4—C3—N3118.0 (2)N7—C25—Cl2120.86 (18)
C5—C4—C3119.7 (3)C24—C25—Cl2126.3 (2)
C5—C4—H4122.9 (17)N8—C26—C27113.4 (2)
C3—C4—H4117.3 (17)N8—C26—H26A106.3 (17)
C4—C5—C6118.2 (3)C27—C26—H26A111.8 (17)
C4—C5—H5120.1 (16)N8—C26—H26B106.6 (15)
C6—C5—H5121.6 (16)C27—C26—H26B110.3 (16)
C5—C6—C1120.4 (2)H26A—C26—H26B108 (2)
C5—C6—C7136.4 (2)C28—C27—N12108.0 (2)
C1—C6—C7103.2 (2)C28—C27—C26129.6 (2)
N1—C7—C6112.6 (2)N12—C27—C26122.3 (2)
N1—C7—Cl1120.92 (19)N10—C28—C27105.4 (2)
C6—C7—Cl1126.4 (2)N10—C28—H28117.6 (17)
N2—C8—C9112.6 (2)C27—C28—H28136.8 (17)
N2—C8—H8A108.2 (16)N10—C29—C30113.2 (2)
C9—C8—H8A110.3 (16)N10—C29—H29A109.1 (19)
N2—C8—H8B107.8 (16)C30—C29—H29A108.5 (19)
C9—C8—H8B113.1 (16)N10—C29—H29B103.5 (16)
H8A—C8—H8B105 (2)C30—C29—H29B113.0 (15)
C10—C9—N6108.3 (2)H29A—C29—H29B109 (2)
C10—C9—C8130.1 (2)C29—C30—C31109.5 (3)
N6—C9—C8121.6 (2)C29—C30—H30A110.9 (19)
N4—C10—C9105.3 (2)C31—C30—H30A109.1 (19)
N4—C10—H10122.4 (18)C29—C30—H30B110.5 (15)
C9—C10—H10132.2 (18)C31—C30—H30B109.7 (16)
N4—C11—C12113.2 (2)H30A—C30—H30B107 (2)
N4—C11—H11A107.9 (16)C32—C31—C30114.5 (3)
C12—C11—H11A107.2 (16)C32—C31—H31A110 (2)
N4—C11—H11B109.0 (15)C30—C31—H31A108 (2)
C12—C11—H11B109.6 (15)C32—C31—H31B107.6 (18)
H11A—C11—H11B110 (2)C30—C31—H31B109.0 (17)
C11—C12—C13110.7 (3)H31A—C31—H31B108 (3)
C11—C12—H12A109.3 (18)C31—C32—C33113.8 (3)
C13—C12—H12A110.7 (18)C31—C32—H32A108.2 (18)
C11—C12—H12B108.0 (16)C33—C32—H32A110.7 (18)
C13—C12—H12B111.0 (16)C31—C32—H32B110 (2)
H12A—C12—H12B107 (2)C33—C32—H32B108 (2)
C14—C13—C12114.8 (3)H32A—C32—H32B106 (3)
C14—C13—H13A110.2 (17)C32—C33—C34A120.2 (9)
C12—C13—H13A105.5 (17)C32—C33—C34B106.2 (10)
C14—C13—H13B109.4 (16)C32—C33—H33A108.2 (18)
C12—C13—H13B109.6 (16)C34A—C33—H33A107 (2)
H13A—C13—H13B107 (2)C34B—C33—H33A115 (2)
C13—C14—C15113.4 (3)C32—C33—H33B111 (2)
C13—C14—H14A109.8 (17)C34A—C33—H33B108 (2)
C15—C14—H14A106.1 (17)C34B—C33—H33B115 (3)
C13—C14—H14B109.1 (17)H33A—C33—H33B102 (3)
C15—C14—H14B110.3 (17)C35A—C34A—C33116.1 (12)
H14A—C14—H14B108 (2)C35A—C34A—H34A108.3
C16—C15—C14113.4 (3)C33—C34A—H34A108.3
C16—C15—H15A111.2 (16)C35A—C34A—H34B108.3
C14—C15—H15A107.7 (16)C33—C34A—H34B108.3
C16—C15—H15B109.6 (18)H34A—C34A—H34B107.4
C14—C15—H15B109.5 (18)C36A—C35A—C34A113.4 (5)
H15A—C15—H15B105 (2)C36A—C35A—H35A108.9
C15—C16—C17112.8 (3)C34A—C35A—H35A108.9
C15—C16—H16A108.3 (15)C36A—C35A—H35B108.9
C17—C16—H16A110.2 (14)C34A—C35A—H35B108.9
C15—C16—H16B111.9 (17)H35A—C35A—H35B107.7
C17—C16—H16B108.5 (17)C35A—C36A—H36A109.5
H16A—C16—H16B105 (2)C35A—C36A—H36B109.5
C18—C17—C16113.3 (3)H36A—C36A—H36B109.5
C18—C17—H17A111.5 (17)C35A—C36A—H36C109.5
C16—C17—H17A107.5 (17)H36A—C36A—H36C109.5
C18—C17—H17B109.4 (18)H36B—C36A—H36C109.5
C16—C17—H17B110.7 (17)C35B—C34B—C33110.8 (14)
H17A—C17—H17B104 (2)C35B—C34B—H34C109.5
C17—C18—H18A113 (2)C33—C34B—H34C109.5
C17—C18—H18B112 (2)C35B—C34B—H34D109.5
H18A—C18—H18B102 (3)C33—C34B—H34D109.5
C17—C18—H18C113 (3)H34C—C34B—H34D108.1
H18A—C18—H18C108 (3)C36B—C35B—C34B113.3 (5)
H18B—C18—H18C108 (3)C36B—C35B—H35C108.9
C25—N7—N8105.47 (19)C34B—C35B—H35C108.9
C19—N8—N7111.2 (2)C36B—C35B—H35D108.9
C19—N8—C26128.1 (2)C34B—C35B—H35D108.9
N7—N8—C26120.7 (2)H35C—C35B—H35D107.7
O4—N9—O3123.7 (2)C35B—C36B—H36D109.5
O4—N9—C21118.4 (2)C35B—C36B—H36E109.5
O3—N9—C21117.9 (2)H36D—C36B—H36E109.5
N11—N10—C28110.5 (2)C35B—C36B—H36F109.5
N11—N10—C29120.7 (2)H36D—C36B—H36F109.5
C28—N10—C29128.7 (2)H36E—C36B—H36F109.5
N12—N11—N10107.2 (2)
C7—N1—N2—C11.0 (3)C28—N10—N11—N120.2 (3)
C7—N1—N2—C8171.4 (2)C29—N10—N11—N12178.9 (2)
C10—N4—N5—N60.2 (3)N10—N11—N12—C270.1 (3)
C11—N4—N5—N6179.7 (2)N7—N8—C19—C20179.6 (2)
N4—N5—N6—C90.0 (3)C26—N8—C19—C203.2 (4)
N1—N2—C1—C2178.6 (2)N7—N8—C19—C240.2 (3)
C8—N2—C1—C29.0 (4)C26—N8—C19—C24177.1 (2)
N1—N2—C1—C60.5 (3)N8—C19—C20—C21179.3 (2)
C8—N2—C1—C6170.1 (2)C24—C19—C20—C211.0 (4)
N2—C1—C2—C3179.2 (3)C19—C20—C21—C220.6 (4)
C6—C1—C2—C30.2 (4)C19—C20—C21—N9179.7 (2)
C1—C2—C3—C40.5 (4)O4—N9—C21—C205.6 (3)
C1—C2—C3—N3178.6 (2)O3—N9—C21—C20174.5 (2)
O1—N3—C3—C2178.4 (2)O4—N9—C21—C22175.3 (2)
O2—N3—C3—C20.9 (3)O3—N9—C21—C224.6 (4)
O1—N3—C3—C40.7 (3)C20—C21—C22—C230.2 (4)
O2—N3—C3—C4180.0 (2)N9—C21—C22—C23178.9 (2)
C2—C3—C4—C50.6 (4)C21—C22—C23—C240.6 (4)
N3—C3—C4—C5178.4 (2)C22—C23—C24—C190.3 (4)
C3—C4—C5—C60.0 (4)C22—C23—C24—C25180.0 (3)
C4—C5—C6—C10.7 (4)N8—C19—C24—C23179.6 (2)
C4—C5—C6—C7179.6 (3)C20—C19—C24—C230.6 (4)
N2—C1—C6—C5180.0 (2)N8—C19—C24—C250.6 (3)
C2—C1—C6—C50.9 (4)C20—C19—C24—C25179.2 (2)
N2—C1—C6—C70.2 (3)N8—N7—C25—C240.7 (3)
C2—C1—C6—C7179.4 (2)N8—N7—C25—Cl2179.31 (17)
N2—N1—C7—C61.2 (3)C23—C24—C25—N7179.4 (3)
N2—N1—C7—Cl1179.25 (18)C19—C24—C25—N70.8 (3)
C5—C6—C7—N1179.4 (3)C23—C24—C25—Cl20.5 (5)
C1—C6—C7—N10.9 (3)C19—C24—C25—Cl2179.23 (19)
C5—C6—C7—Cl10.1 (5)C19—N8—C26—C2777.4 (3)
C1—C6—C7—Cl1179.6 (2)N7—N8—C26—C2799.6 (3)
C1—N2—C8—C973.4 (3)N11—N12—C27—C280.3 (3)
N1—N2—C8—C995.3 (3)N11—N12—C27—C26177.2 (2)
N5—N6—C9—C100.2 (3)N8—C26—C27—C28111.7 (3)
N5—N6—C9—C8179.2 (2)N8—C26—C27—N1271.4 (3)
N2—C8—C9—C10106.5 (3)N11—N10—C28—C270.3 (3)
N2—C8—C9—N674.2 (3)C29—N10—C28—C27178.6 (2)
N5—N4—C10—C90.3 (3)N12—C27—C28—N100.4 (3)
C11—N4—C10—C9179.5 (3)C26—C27—C28—N10176.8 (2)
N6—C9—C10—N40.3 (3)N11—N10—C29—C3095.7 (3)
C8—C9—C10—N4179.1 (3)C28—N10—C29—C3085.4 (3)
C10—N4—C11—C12109.4 (3)N10—C29—C30—C31176.9 (3)
N5—N4—C11—C1270.8 (3)C29—C30—C31—C32173.6 (3)
N4—C11—C12—C13178.0 (2)C30—C31—C32—C3363.7 (4)
C11—C12—C13—C14178.8 (2)C31—C32—C33—C34A159 (2)
C12—C13—C14—C1554.8 (4)C31—C32—C33—C34B160.8 (19)
C13—C14—C15—C16165.4 (3)C32—C33—C34A—C35A178 (2)
C14—C15—C16—C17175.9 (3)C33—C34A—C35A—C36A174 (2)
C15—C16—C17—C18176.2 (3)C32—C33—C34B—C35B177 (3)
C25—N7—N8—C190.3 (3)C33—C34B—C35B—C36B178 (3)
C25—N7—N8—C26177.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N7/N8/C19/C24/C25, N10/N11/N12/C27/C28 and C19–C24 rings, respectively
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.98 (3)2.62 (3)3.348 (3)132 (2)
C10—H10···N6ii0.93 (3)2.57 (3)3.377 (3)145 (2)
C26—H26A···O4iii0.95 (3)2.54 (3)3.240 (3)131 (2)
C26—H26B···Cl2iv0.98 (3)2.82 (3)3.682 (3)147 (2)
C28—H28···N12iv0.92 (3)2.45 (3)3.298 (3)152 (2)
C29—H29B···N11iv1.05 (3)2.63 (3)3.594 (4)153 (2)
C29—H29B···N12iv1.05 (3)2.65 (3)3.476 (3)135 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.
 

Acknowledgements

The support of NSF–MRI Grant No.1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBoulhaoua, M., Abdelahi, M. M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x160485.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds