organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Methyl-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: nadouchsebbarkheira@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 January 2017; accepted 18 January 2017; online 3 February 2017)

In the crystal of the title compound, C9H9NOS, the mol­ecules are linked by C—H⋯O hydrogen bonds to generate bilayers lying parallel to (001).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a continuation of our studies of N-substituted benzo­thia­zines (Sebbar et al., 2014[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614.], 2016[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016). Res. Chem. Intermed. 42, 6845-6862.]; Ellouz et al., 2015[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022-o1023.]), we now describe the synthesis and structure of the title compound, (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with 50% probability ellipsoids.

A puckering analysis of the heterocyclic ring gave the parameters Q = 0.668 (1) Å, θ = 113.2 (1)° and φ = 146.9°: atoms C1, C6, S1 and N1 are roughly coplanar (r.m.s. deviation = 0.046 Å) and atoms C7 and C8 deviate in the same sense [by 0.476 (1) and 1.111 (1) Å, respectively] from the mean plane. In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds (Table 1[link]) to form bilayers oriented parallel to (001) (Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O1i 0.983 (18) 2.301 (18) 3.2819 (16) 175.0 (15)
C9—H9B⋯O1ii 0.998 (19) 2.62 (2) 3.6157 (17) 173.3 (15)
C9—H9C⋯O1iii 0.995 (17) 2.512 (17) 3.4265 (16) 152.6 (14)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Detail of the inter­molecular C—H⋯O hydrogen bonding [symmetry codes: (i) [{1\over 2}] + x, [{1\over 2}] − y, 1 − z; (ii) [{1\over 2}] − x, [{1\over 2}] + y, z; (iii) −[{1\over 2}] + x, [{1\over 2}] − y, 1 − z].
[Figure 3]
Figure 3
Packing viewed along the a axis with C—H⋯O hydrogen bonds shown as dotted lines.

Synthesis and crystallization

To a solution of 3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one (2 mmol), potassium carbonate (4 mmol) and tetra n-butyl ammonium bromide (0.2 mmol) in DMF (15 ml) was added iodo­methane (4 mmol). Stirring was continued at room temperature for 12 h. The mixture was filtered and the solvent removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate–hexane (9:1) as eluent. Brown crystals of the title compound were isolated when the solvent was allowed to evaporate (yield 57%; m.p. 370 K).

Refinement

Crystal and refinement data are presented in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H9NOS
Mr 179.23
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 150
a, b, c (Å) 7.3148 (6), 8.4030 (6), 27.670 (2)
V3) 1700.8 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 2.95
Crystal size (mm) 0.33 × 0.31 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.63, 0.88
No. of measured, independent and observed [I > 2σ(I)] reflections 16139, 1674, 1628
Rint 0.040
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.04
No. of reflections 1674
No. of parameters 146
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.29, −0.24
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-Methyl-3,4-dihydro-2H-1,4-benzothiazin-3-one top
Crystal data top
C9H9NOSDx = 1.400 Mg m3
Mr = 179.23Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 9930 reflections
a = 7.3148 (6) Åθ = 3.2–72.4°
b = 8.4030 (6) ŵ = 2.95 mm1
c = 27.670 (2) ÅT = 150 K
V = 1700.8 (2) Å3Plate, colourless
Z = 80.33 × 0.31 × 0.04 mm
F(000) = 752
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
1674 independent reflections
Radiation source: INCOATEC IµS micro-focus source1628 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 3.2°
ω scansh = 89
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1010
Tmin = 0.63, Tmax = 0.88l = 3430
16139 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029All H-atom parameters refined
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.7672P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
1674 reflectionsΔρmax = 0.29 e Å3
146 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.70736 (4)0.30751 (4)0.62414 (2)0.02827 (15)
O10.44820 (14)0.32356 (11)0.50834 (3)0.0293 (2)
N10.36431 (14)0.44168 (12)0.57877 (3)0.0207 (2)
C10.55962 (17)0.44702 (14)0.65097 (4)0.0227 (3)
C20.59106 (19)0.50090 (17)0.69783 (5)0.0302 (3)
H20.693 (2)0.458 (2)0.7141 (6)0.039 (5)*
C30.4778 (2)0.61424 (18)0.71846 (5)0.0347 (3)
H30.499 (3)0.652 (2)0.7512 (7)0.046 (5)*
C40.3350 (2)0.67709 (18)0.69178 (5)0.0320 (3)
H40.261 (3)0.759 (2)0.7048 (6)0.047 (5)*
C50.29965 (17)0.62271 (16)0.64548 (5)0.0257 (3)
H50.195 (2)0.666 (2)0.6276 (5)0.030 (4)*
C60.40958 (16)0.50524 (14)0.62472 (4)0.0200 (3)
C70.49111 (17)0.38099 (14)0.54745 (4)0.0220 (3)
C80.68710 (17)0.38743 (16)0.56376 (5)0.0254 (3)
H8A0.731 (2)0.492 (2)0.5634 (6)0.033 (4)*
H8B0.759 (3)0.319 (2)0.5421 (6)0.034 (4)*
C90.17297 (18)0.44689 (17)0.56278 (5)0.0280 (3)
H9A0.095 (2)0.435 (2)0.5922 (6)0.034 (4)*
H9B0.148 (3)0.549 (2)0.5456 (6)0.043 (5)*
H9C0.152 (2)0.359 (2)0.5394 (6)0.033 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0234 (2)0.0272 (2)0.0342 (2)0.00595 (11)0.00356 (11)0.00232 (12)
O10.0317 (5)0.0301 (5)0.0261 (5)0.0038 (4)0.0010 (4)0.0083 (4)
N10.0175 (5)0.0229 (5)0.0217 (5)0.0001 (4)0.0023 (4)0.0015 (4)
C10.0213 (6)0.0234 (6)0.0233 (6)0.0027 (5)0.0004 (4)0.0032 (5)
C20.0280 (7)0.0383 (7)0.0242 (6)0.0054 (6)0.0050 (5)0.0052 (5)
C30.0367 (8)0.0469 (8)0.0206 (6)0.0080 (6)0.0020 (5)0.0050 (6)
C40.0322 (7)0.0364 (7)0.0275 (7)0.0012 (6)0.0074 (6)0.0069 (5)
C50.0239 (6)0.0270 (6)0.0262 (6)0.0010 (5)0.0023 (5)0.0006 (5)
C60.0194 (6)0.0214 (6)0.0192 (6)0.0030 (4)0.0008 (4)0.0011 (4)
C70.0242 (6)0.0189 (5)0.0229 (6)0.0016 (5)0.0007 (5)0.0012 (4)
C80.0209 (6)0.0269 (6)0.0283 (6)0.0000 (5)0.0018 (5)0.0044 (5)
C90.0202 (6)0.0345 (7)0.0294 (7)0.0014 (5)0.0059 (5)0.0028 (6)
Geometric parameters (Å, º) top
S1—C11.7589 (13)C3—H30.97 (2)
S1—C81.8067 (14)C4—C51.3846 (19)
O1—C71.2257 (15)C4—H40.94 (2)
N1—C71.3680 (16)C5—C61.3967 (17)
N1—C61.4183 (15)C5—H50.979 (17)
N1—C91.4684 (16)C7—C81.5040 (18)
C1—C21.3924 (18)C8—H8A0.937 (19)
C1—C61.4042 (17)C8—H8B0.983 (18)
C2—C31.385 (2)C9—H9A0.998 (17)
C2—H20.943 (18)C9—H9B0.998 (19)
C3—C41.384 (2)C9—H9C0.995 (17)
C1—S1—C895.30 (6)C5—C6—C1118.91 (11)
C7—N1—C6123.36 (10)C5—C6—N1120.02 (11)
C7—N1—C9117.81 (10)C1—C6—N1121.00 (11)
C6—N1—C9118.77 (10)O1—C7—N1122.17 (12)
C2—C1—C6119.84 (12)O1—C7—C8121.54 (11)
C2—C1—S1120.56 (10)N1—C7—C8116.29 (10)
C6—C1—S1119.61 (9)C7—C8—S1110.02 (9)
C3—C2—C1120.56 (13)C7—C8—H8A110.9 (10)
C3—C2—H2122.5 (11)S1—C8—H8A109.3 (10)
C1—C2—H2116.9 (11)C7—C8—H8B108.0 (11)
C4—C3—C2119.59 (13)S1—C8—H8B107.6 (10)
C4—C3—H3119.6 (12)H8A—C8—H8B110.9 (14)
C2—C3—H3120.8 (12)N1—C9—H9A107.2 (10)
C3—C4—C5120.59 (13)N1—C9—H9B110.2 (11)
C3—C4—H4120.4 (12)H9A—C9—H9B111.7 (14)
C5—C4—H4119.0 (12)N1—C9—H9C108.8 (10)
C4—C5—C6120.40 (12)H9A—C9—H9C111.4 (14)
C4—C5—H5119.5 (9)H9B—C9—H9C107.6 (13)
C6—C5—H5120.1 (9)
C8—S1—C1—C2145.51 (11)S1—C1—C6—N16.45 (16)
C8—S1—C1—C634.01 (11)C7—N1—C6—C5152.11 (12)
C6—C1—C2—C31.42 (19)C9—N1—C6—C525.19 (16)
S1—C1—C2—C3178.10 (11)C7—N1—C6—C130.72 (17)
C1—C2—C3—C41.6 (2)C9—N1—C6—C1151.98 (12)
C2—C3—C4—C52.8 (2)C6—N1—C7—O1178.39 (11)
C3—C4—C5—C61.0 (2)C9—N1—C7—O14.28 (17)
C4—C5—C6—C11.97 (19)C6—N1—C7—C81.19 (16)
C4—C5—C6—N1175.26 (11)C9—N1—C7—C8176.13 (11)
C2—C1—C6—C53.18 (18)O1—C7—C8—S1129.74 (11)
S1—C1—C6—C5176.35 (9)N1—C7—C8—S149.85 (13)
C2—C1—C6—N1174.02 (11)C1—S1—C8—C760.08 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O1i0.983 (18)2.301 (18)3.2819 (16)175.0 (15)
C9—H9B···O1ii0.998 (19)2.62 (2)3.6157 (17)173.3 (15)
C9—H9C···O1iii0.995 (17)2.512 (17)3.4265 (16)152.6 (14)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z+1.
 

Acknowledgements

The support of NSF-MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016). Res. Chem. Intermed. 42, 6845–6862.  Web of Science CSD CrossRef CAS Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds