organic compounds
4-Methyl-3,4-dihydro-2H-1,4-benzothiazin-3-one
aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: nadouchsebbarkheira@gmail.com
In the crystal of the title compound, C9H9NOS, the molecules are linked by C—H⋯O hydrogen bonds to generate bilayers lying parallel to (001).
Keywords: crystal structure; bilayer; hydrogen bond; benzothiazine.
CCDC reference: 1528393
Structure description
As a continuation of our studies of N-substituted benzothiazines (Sebbar et al., 2014, 2016; Ellouz et al., 2015), we now describe the synthesis and structure of the title compound, (Fig. 1).
A puckering analysis of the heterocyclic ring gave the parameters Q = 0.668 (1) Å, θ = 113.2 (1)° and φ = 146.9°: atoms C1, C6, S1 and N1 are roughly coplanar (r.m.s. deviation = 0.046 Å) and atoms C7 and C8 deviate in the same sense [by 0.476 (1) and 1.111 (1) Å, respectively] from the mean plane. In the crystal, the molecules are linked by C—H⋯O hydrogen bonds (Table 1) to form bilayers oriented parallel to (001) (Figs. 2 and 3).
Synthesis and crystallization
To a solution of 3,4-dihydro-2H-1,4-benzothiazin-3-one (2 mmol), potassium carbonate (4 mmol) and tetra n-butyl ammonium bromide (0.2 mmol) in DMF (15 ml) was added iodomethane (4 mmol). Stirring was continued at room temperature for 12 h. The mixture was filtered and the solvent removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate–hexane (9:1) as Brown crystals of the title compound were isolated when the solvent was allowed to evaporate (yield 57%; m.p. 370 K).
Refinement
data are presented in Table 2Structural data
CCDC reference: 1528393
https://doi.org/10.1107/S2414314617000979/hb4112sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617000979/hb4112Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617000979/hb4112Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617000979/hb4112Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C9H9NOS | Dx = 1.400 Mg m−3 |
Mr = 179.23 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Pbca | Cell parameters from 9930 reflections |
a = 7.3148 (6) Å | θ = 3.2–72.4° |
b = 8.4030 (6) Å | µ = 2.95 mm−1 |
c = 27.670 (2) Å | T = 150 K |
V = 1700.8 (2) Å3 | Plate, colourless |
Z = 8 | 0.33 × 0.31 × 0.04 mm |
F(000) = 752 |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 1674 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 1628 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.040 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.2°, θmin = 3.2° |
ω scans | h = −8→9 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −10→10 |
Tmin = 0.63, Tmax = 0.88 | l = −34→30 |
16139 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | All H-atom parameters refined |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0383P)2 + 0.7672P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
1674 reflections | Δρmax = 0.29 e Å−3 |
146 parameters | Δρmin = −0.24 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0029 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.70736 (4) | 0.30751 (4) | 0.62414 (2) | 0.02827 (15) | |
O1 | 0.44820 (14) | 0.32356 (11) | 0.50834 (3) | 0.0293 (2) | |
N1 | 0.36431 (14) | 0.44168 (12) | 0.57877 (3) | 0.0207 (2) | |
C1 | 0.55962 (17) | 0.44702 (14) | 0.65097 (4) | 0.0227 (3) | |
C2 | 0.59106 (19) | 0.50090 (17) | 0.69783 (5) | 0.0302 (3) | |
H2 | 0.693 (2) | 0.458 (2) | 0.7141 (6) | 0.039 (5)* | |
C3 | 0.4778 (2) | 0.61424 (18) | 0.71846 (5) | 0.0347 (3) | |
H3 | 0.499 (3) | 0.652 (2) | 0.7512 (7) | 0.046 (5)* | |
C4 | 0.3350 (2) | 0.67709 (18) | 0.69178 (5) | 0.0320 (3) | |
H4 | 0.261 (3) | 0.759 (2) | 0.7048 (6) | 0.047 (5)* | |
C5 | 0.29965 (17) | 0.62271 (16) | 0.64548 (5) | 0.0257 (3) | |
H5 | 0.195 (2) | 0.666 (2) | 0.6276 (5) | 0.030 (4)* | |
C6 | 0.40958 (16) | 0.50524 (14) | 0.62472 (4) | 0.0200 (3) | |
C7 | 0.49111 (17) | 0.38099 (14) | 0.54745 (4) | 0.0220 (3) | |
C8 | 0.68710 (17) | 0.38743 (16) | 0.56376 (5) | 0.0254 (3) | |
H8A | 0.731 (2) | 0.492 (2) | 0.5634 (6) | 0.033 (4)* | |
H8B | 0.759 (3) | 0.319 (2) | 0.5421 (6) | 0.034 (4)* | |
C9 | 0.17297 (18) | 0.44689 (17) | 0.56278 (5) | 0.0280 (3) | |
H9A | 0.095 (2) | 0.435 (2) | 0.5922 (6) | 0.034 (4)* | |
H9B | 0.148 (3) | 0.549 (2) | 0.5456 (6) | 0.043 (5)* | |
H9C | 0.152 (2) | 0.359 (2) | 0.5394 (6) | 0.033 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0234 (2) | 0.0272 (2) | 0.0342 (2) | 0.00595 (11) | −0.00356 (11) | 0.00232 (12) |
O1 | 0.0317 (5) | 0.0301 (5) | 0.0261 (5) | −0.0038 (4) | −0.0010 (4) | −0.0083 (4) |
N1 | 0.0175 (5) | 0.0229 (5) | 0.0217 (5) | 0.0001 (4) | −0.0023 (4) | −0.0015 (4) |
C1 | 0.0213 (6) | 0.0234 (6) | 0.0233 (6) | −0.0027 (5) | −0.0004 (4) | 0.0032 (5) |
C2 | 0.0280 (7) | 0.0383 (7) | 0.0242 (6) | −0.0054 (6) | −0.0050 (5) | 0.0052 (5) |
C3 | 0.0367 (8) | 0.0469 (8) | 0.0206 (6) | −0.0080 (6) | 0.0020 (5) | −0.0050 (6) |
C4 | 0.0322 (7) | 0.0364 (7) | 0.0275 (7) | −0.0012 (6) | 0.0074 (6) | −0.0069 (5) |
C5 | 0.0239 (6) | 0.0270 (6) | 0.0262 (6) | 0.0010 (5) | 0.0023 (5) | −0.0006 (5) |
C6 | 0.0194 (6) | 0.0214 (6) | 0.0192 (6) | −0.0030 (4) | 0.0008 (4) | 0.0011 (4) |
C7 | 0.0242 (6) | 0.0189 (5) | 0.0229 (6) | −0.0016 (5) | 0.0007 (5) | −0.0012 (4) |
C8 | 0.0209 (6) | 0.0269 (6) | 0.0283 (6) | 0.0000 (5) | 0.0018 (5) | −0.0044 (5) |
C9 | 0.0202 (6) | 0.0345 (7) | 0.0294 (7) | 0.0014 (5) | −0.0059 (5) | −0.0028 (6) |
S1—C1 | 1.7589 (13) | C3—H3 | 0.97 (2) |
S1—C8 | 1.8067 (14) | C4—C5 | 1.3846 (19) |
O1—C7 | 1.2257 (15) | C4—H4 | 0.94 (2) |
N1—C7 | 1.3680 (16) | C5—C6 | 1.3967 (17) |
N1—C6 | 1.4183 (15) | C5—H5 | 0.979 (17) |
N1—C9 | 1.4684 (16) | C7—C8 | 1.5040 (18) |
C1—C2 | 1.3924 (18) | C8—H8A | 0.937 (19) |
C1—C6 | 1.4042 (17) | C8—H8B | 0.983 (18) |
C2—C3 | 1.385 (2) | C9—H9A | 0.998 (17) |
C2—H2 | 0.943 (18) | C9—H9B | 0.998 (19) |
C3—C4 | 1.384 (2) | C9—H9C | 0.995 (17) |
C1—S1—C8 | 95.30 (6) | C5—C6—C1 | 118.91 (11) |
C7—N1—C6 | 123.36 (10) | C5—C6—N1 | 120.02 (11) |
C7—N1—C9 | 117.81 (10) | C1—C6—N1 | 121.00 (11) |
C6—N1—C9 | 118.77 (10) | O1—C7—N1 | 122.17 (12) |
C2—C1—C6 | 119.84 (12) | O1—C7—C8 | 121.54 (11) |
C2—C1—S1 | 120.56 (10) | N1—C7—C8 | 116.29 (10) |
C6—C1—S1 | 119.61 (9) | C7—C8—S1 | 110.02 (9) |
C3—C2—C1 | 120.56 (13) | C7—C8—H8A | 110.9 (10) |
C3—C2—H2 | 122.5 (11) | S1—C8—H8A | 109.3 (10) |
C1—C2—H2 | 116.9 (11) | C7—C8—H8B | 108.0 (11) |
C4—C3—C2 | 119.59 (13) | S1—C8—H8B | 107.6 (10) |
C4—C3—H3 | 119.6 (12) | H8A—C8—H8B | 110.9 (14) |
C2—C3—H3 | 120.8 (12) | N1—C9—H9A | 107.2 (10) |
C3—C4—C5 | 120.59 (13) | N1—C9—H9B | 110.2 (11) |
C3—C4—H4 | 120.4 (12) | H9A—C9—H9B | 111.7 (14) |
C5—C4—H4 | 119.0 (12) | N1—C9—H9C | 108.8 (10) |
C4—C5—C6 | 120.40 (12) | H9A—C9—H9C | 111.4 (14) |
C4—C5—H5 | 119.5 (9) | H9B—C9—H9C | 107.6 (13) |
C6—C5—H5 | 120.1 (9) | ||
C8—S1—C1—C2 | −145.51 (11) | S1—C1—C6—N1 | 6.45 (16) |
C8—S1—C1—C6 | 34.01 (11) | C7—N1—C6—C5 | 152.11 (12) |
C6—C1—C2—C3 | −1.42 (19) | C9—N1—C6—C5 | −25.19 (16) |
S1—C1—C2—C3 | 178.10 (11) | C7—N1—C6—C1 | −30.72 (17) |
C1—C2—C3—C4 | −1.6 (2) | C9—N1—C6—C1 | 151.98 (12) |
C2—C3—C4—C5 | 2.8 (2) | C6—N1—C7—O1 | 178.39 (11) |
C3—C4—C5—C6 | −1.0 (2) | C9—N1—C7—O1 | −4.28 (17) |
C4—C5—C6—C1 | −1.97 (19) | C6—N1—C7—C8 | −1.19 (16) |
C4—C5—C6—N1 | 175.26 (11) | C9—N1—C7—C8 | 176.13 (11) |
C2—C1—C6—C5 | 3.18 (18) | O1—C7—C8—S1 | −129.74 (11) |
S1—C1—C6—C5 | −176.35 (9) | N1—C7—C8—S1 | 49.85 (13) |
C2—C1—C6—N1 | −174.02 (11) | C1—S1—C8—C7 | −60.08 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···O1i | 0.983 (18) | 2.301 (18) | 3.2819 (16) | 175.0 (15) |
C9—H9B···O1ii | 0.998 (19) | 2.62 (2) | 3.6157 (17) | 173.3 (15) |
C9—H9C···O1iii | 0.995 (17) | 2.512 (17) | 3.4265 (16) | 152.6 (14) |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) −x+1/2, y+1/2, z; (iii) x−1/2, −y+1/2, −z+1. |
Acknowledgements
The support of NSF-MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016). Res. Chem. Intermed. 42, 6845–6862. Web of Science CSD CrossRef CAS Google Scholar
Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.