organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(3-Phenyl-1H-pyrazol-5-yl)-1,2,3,4-tetra­hydro­quinoxaline-2,3-dione

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: ahabchanenoureddine@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 January 2017; accepted 15 January 2017; online 3 February 2017)

In the title compound, C17H12N4O2, the mean plane of the pyrazole ring is nearly perpendicular to that of the tetra­hydro­quinoxalinedione moiety [dihedral angle = 86.92 (7)°]. The phenyl ring is disordered over two orientations in a 0.556 (4):0.444 (4) ratio. In the crystal, mol­ecules are connected by bifurcated N—H⋯(N,O) and N—H⋯(O,O) hydrogen bonds, generating (100) sheets. Aromatic ππ stacking [shortest centroid–centroid separation = 3.5307 (8) Å] links the sheets into a three-dimensional network. A short N⋯O contact [2.8198 (19) Å] is present.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoxaline derivatives have various biological activities including anti­bacterial (Kleim et al., 1995[Kleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rösner, M., Rübsamen-Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., et al. (1995). Antimicrob. Agents Chemother. 39, 2253-2257.]), anti­microbial (Vieira et al., 2014[Vieira, M., Pinheiro, C., Fernandes, R., Noronha, J. P. & Prudêncio, C. (2014). Microbiol. Res. 169, 287-293.]) and anti­cancer (Noolvi et al., 2011[Noolvi, M. N., Patel, H. M., Bhardwaj, V. & Chauhan, A. (2011). Eur. J. Med. Chem. 46, 2327-2346.]) properties. As part of our studies in this area, we now describe the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule, with 25% probability ellipsoids. Only the major orientation of the disordered phenyl ring is shown

The phenyl ring attached to C11 is rotationally disordered over two orientations in a 0.556 (4):0.444 (4) ratio. The dihedral angle between the orientations is 26.6 (4)°. The dihedral angle between the mean planes of the C1–C6 and C1,C6,N1,C7,C8,N2 rings is 2.25 (9)° while that between the latter and the mean plane of the C9,C10,C11,N4,N3 ring is 86.34 (4)°.

In the crystal, the mol­ecules are linked by N—H⋯(N,O) and N—H⋯(O,O) hydrogen bonds and C—H⋯O inter­actions (Table 1[link]) and slipped ππ-stacking inter­actions (Figs. 2[link] and 3[link]). The last involve the C9,C10,C11,N4,N3 ring and the C1,C6,N1,C7,C8,N2 ring at x, [{3\over 2}] − y, [{1\over 2}] + z [centroid–centroid distance = 3.887 (1) Å, dihedral angle = 14.85 (8)°] as well as the latter ring and its counterpart at 1 − x, 1 − y, −z [centroid–centroid distance = 3.531 (1) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.92 (2) 2.10 (2) 2.9448 (17) 152.1 (18)
N1—H1⋯N3ii 0.92 (2) 2.45 (2) 3.0160 (18) 119.8 (17)
N4—H4A⋯O1iii 0.917 (19) 2.276 (19) 3.1851 (18) 171.0 (16)
N4—H4A⋯O2iii 0.917 (19) 2.399 (18) 2.9409 (18) 117.8 (14)
C5—H5⋯O2i 0.982 (19) 2.552 (18) 3.311 (2) 134.1 (13)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Detail of the hydrogen bonding (blue and black dotted lines), the ππ stacking inter­actions (orange dotted lines) and the ππ inter­actions of the carbonyl groups with the quinoxaline system (green dotted lines).
[Figure 3]
Figure 3
Packing projected onto (101) (key to inter­molecular inter­actions as in Fig. 2[link]).

Synthesis and crystallization

0.01 mol of 3-N-(2-amino­phenyl­amino)-5-phenyl­pyrazole was dissolved in 80 ml of ethyl oxalate. The reaction mixture was refluxed for 1 h. After cooling, the obtained precipitate was recrystallized from ethanol solution to afford crystals of the title compound.

Refinement

Crystal and refinement data are presented in Table 2[link]. The pendant phenyl ring is rotationally disordered over two sets of sites in a 0.556 (4):0.444 (4) ratio. The two components of the disorder were refined as rigid hexa­gons with the H atoms included as riding contributions in calculated positions.

Table 2
Experimental details

Crystal data
Chemical formula C17H12N4O2
Mr 304.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 12.6320 (6), 9.3954 (4), 12.3733 (6)
β (°) 102.708 (1)
V3) 1432.52 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.29 × 0.11
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.86, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 26569, 3702, 2678
Rint 0.038
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.153, 1.05
No. of reflections 3702
No. of parameters 231
No. of restraints 73
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.24
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-(3-Phenyl-1H-pyrazol-5-yl)-1,2,3,4-tetrahydroquinoxaline-2,3-dione top
Crystal data top
C17H12N4O2F(000) = 632
Mr = 304.31Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6320 (6) ÅCell parameters from 6591 reflections
b = 9.3954 (4) Åθ = 2.7–24.9°
c = 12.3733 (6) ŵ = 0.10 mm1
β = 102.708 (1)°T = 296 K
V = 1432.52 (11) Å3Plate, colourless
Z = 40.30 × 0.29 × 0.11 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3702 independent reflections
Radiation source: fine-focus sealed tube2678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.3333 pixels mm-1θmax = 28.7°, θmin = 1.7°
φ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1212
Tmin = 0.86, Tmax = 0.99l = 1616
26569 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: mixed
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.2844P]
where P = (Fo2 + 2Fc2)/3
3702 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.26 e Å3
73 restraintsΔρmin = 0.24 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 25 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The pendant phenyl ring is rotationally disordered over two sites in a 56:44 ratio. The two components of the disorder were refined as rigid hexagons with the H-atoms included as riding contributions in calculated positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.43419 (10)0.84212 (13)0.06590 (9)0.0540 (3)
O20.52330 (11)0.80657 (13)0.15125 (9)0.0590 (3)
N10.54348 (10)0.66824 (14)0.10784 (10)0.0437 (3)
H10.5128 (17)0.676 (2)0.1819 (18)0.074 (6)*
N20.63137 (10)0.62897 (13)0.11388 (9)0.0411 (3)
N30.60756 (11)0.51255 (14)0.27572 (10)0.0470 (3)
N40.66080 (11)0.50551 (14)0.38248 (10)0.0447 (3)
H4A0.6303 (15)0.4513 (19)0.4292 (16)0.054 (5)*
C10.66635 (12)0.54086 (16)0.03612 (12)0.0404 (3)
C20.74269 (14)0.43396 (19)0.06845 (15)0.0535 (4)
H20.7758 (15)0.420 (2)0.1484 (16)0.062 (5)*
C30.77174 (16)0.3479 (2)0.01032 (17)0.0611 (5)
H30.8262 (19)0.274 (2)0.0132 (18)0.082 (6)*
C40.72460 (15)0.3660 (2)0.12091 (16)0.0581 (4)
H40.7446 (17)0.304 (2)0.1770 (18)0.074 (6)*
C50.64992 (14)0.47250 (18)0.15432 (14)0.0499 (4)
H50.6160 (15)0.4852 (19)0.2331 (16)0.057 (5)*
C60.62063 (11)0.56096 (15)0.07603 (12)0.0400 (3)
C70.50519 (11)0.75326 (16)0.03792 (11)0.0401 (3)
C80.55497 (12)0.73284 (15)0.08487 (11)0.0406 (3)
C90.66757 (12)0.59926 (17)0.23003 (12)0.0431 (3)
C100.75853 (14)0.6487 (2)0.30459 (13)0.0517 (4)
H100.8141 (16)0.712 (2)0.2907 (16)0.065 (5)*
C110.75230 (12)0.58549 (17)0.40387 (12)0.0449 (3)
C12A0.8249 (3)0.6043 (4)0.5144 (2)0.0476 (5)0.556 (4)
C13A0.8158 (3)0.5171 (5)0.6026 (3)0.0483 (9)0.556 (4)
H13A0.75960.45140.59450.058*0.556 (4)
C14A0.8907 (4)0.5282 (5)0.7030 (3)0.0612 (9)0.556 (4)
H14A0.88460.46990.76200.073*0.556 (4)
C15A0.9748 (3)0.6265 (5)0.7151 (2)0.0748 (10)0.556 (4)
H15A1.02490.63390.78230.090*0.556 (4)
C16A0.9839 (3)0.7136 (5)0.6269 (3)0.0811 (13)0.556 (4)
H16A1.04010.77940.63500.097*0.556 (4)
C17A0.9090 (3)0.7026 (5)0.5265 (2)0.0713 (12)0.556 (4)
H17A0.91510.76090.46740.086*0.556 (4)
C12B0.8291 (4)0.5833 (6)0.5131 (3)0.0476 (5)0.444 (4)
C13B0.7960 (3)0.5408 (7)0.6081 (4)0.0483 (9)0.444 (4)
H13B0.72510.51040.60340.058*0.444 (4)
C14B0.8690 (4)0.5437 (8)0.7101 (3)0.0612 (9)0.444 (4)
H14B0.84690.51530.77370.073*0.444 (4)
C15B0.9750 (4)0.5892 (7)0.7172 (3)0.0748 (10)0.444 (4)
H15B1.02380.59110.78540.090*0.444 (4)
C16B1.0081 (3)0.6316 (7)0.6221 (4)0.0811 (13)0.444 (4)
H16B1.07900.66200.62680.097*0.444 (4)
C17B0.9351 (4)0.6287 (6)0.5201 (3)0.0713 (12)0.444 (4)
H17B0.95730.65710.45650.086*0.444 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0589 (7)0.0560 (7)0.0458 (6)0.0137 (5)0.0084 (5)0.0050 (5)
O20.0826 (9)0.0582 (7)0.0371 (6)0.0166 (6)0.0151 (6)0.0036 (5)
N10.0493 (7)0.0513 (7)0.0293 (6)0.0045 (6)0.0060 (5)0.0000 (5)
N20.0471 (6)0.0460 (7)0.0296 (6)0.0012 (5)0.0070 (5)0.0020 (5)
N30.0521 (7)0.0532 (8)0.0319 (6)0.0088 (6)0.0013 (5)0.0048 (5)
N40.0490 (7)0.0501 (7)0.0324 (6)0.0071 (6)0.0030 (5)0.0051 (5)
C10.0420 (7)0.0428 (7)0.0371 (7)0.0016 (6)0.0104 (6)0.0003 (6)
C20.0545 (9)0.0577 (10)0.0477 (9)0.0102 (7)0.0100 (7)0.0074 (7)
C30.0614 (10)0.0575 (10)0.0668 (12)0.0164 (9)0.0195 (9)0.0044 (9)
C40.0638 (10)0.0565 (10)0.0596 (11)0.0047 (8)0.0260 (9)0.0078 (8)
C50.0525 (9)0.0563 (9)0.0424 (8)0.0007 (7)0.0138 (7)0.0060 (7)
C60.0403 (7)0.0429 (8)0.0371 (7)0.0031 (6)0.0091 (6)0.0006 (6)
C70.0429 (7)0.0416 (7)0.0353 (7)0.0019 (6)0.0078 (6)0.0016 (6)
C80.0488 (8)0.0397 (7)0.0343 (7)0.0007 (6)0.0112 (6)0.0012 (6)
C90.0467 (8)0.0488 (8)0.0328 (7)0.0010 (6)0.0062 (6)0.0024 (6)
C100.0512 (9)0.0635 (10)0.0390 (8)0.0133 (8)0.0070 (7)0.0023 (7)
C110.0443 (8)0.0525 (8)0.0360 (7)0.0044 (6)0.0048 (6)0.0006 (6)
C12A0.0449 (8)0.0575 (14)0.0383 (8)0.0024 (8)0.0046 (6)0.0041 (8)
C13A0.0435 (14)0.0562 (18)0.0426 (9)0.0046 (14)0.0035 (10)0.0017 (10)
C14A0.054 (2)0.0836 (17)0.0428 (10)0.0090 (15)0.0028 (10)0.0052 (10)
C15A0.0544 (11)0.118 (3)0.0456 (10)0.0025 (14)0.0038 (8)0.0115 (13)
C16A0.0564 (18)0.118 (4)0.0652 (16)0.031 (2)0.0049 (13)0.018 (2)
C17A0.064 (2)0.098 (3)0.0485 (12)0.029 (2)0.0059 (12)0.0059 (19)
C12B0.0449 (8)0.0575 (14)0.0383 (8)0.0024 (8)0.0046 (6)0.0041 (8)
C13B0.0435 (14)0.0562 (18)0.0426 (9)0.0046 (14)0.0035 (10)0.0017 (10)
C14B0.054 (2)0.0836 (17)0.0428 (10)0.0090 (15)0.0028 (10)0.0052 (10)
C15B0.0544 (11)0.118 (3)0.0456 (10)0.0025 (14)0.0038 (8)0.0115 (13)
C16B0.0564 (18)0.118 (4)0.0652 (16)0.031 (2)0.0049 (13)0.018 (2)
C17B0.064 (2)0.098 (3)0.0485 (12)0.029 (2)0.0059 (12)0.0059 (19)
Geometric parameters (Å, º) top
O1—C71.2184 (18)C10—H100.97 (2)
O2—C81.2079 (18)C11—C12A1.480 (2)
N1—C71.3434 (19)C11—C12B1.480 (2)
N1—C61.3971 (19)C12A—C13A1.3900
N1—H10.92 (2)C12A—C17A1.3900
N2—C81.3639 (19)C13A—C14A1.3900
N2—C11.4119 (19)C13A—H13A0.9300
N2—C91.4365 (18)C14A—C15A1.3900
N3—C91.3215 (19)C14A—H14A0.9300
N3—N41.3457 (17)C15A—C16A1.3900
N4—C111.355 (2)C15A—H15A0.9300
N4—H4A0.917 (19)C16A—C17A1.3900
C1—C21.389 (2)C16A—H16A0.9300
C1—C61.394 (2)C17A—H17A0.9300
C2—C31.377 (3)C12B—C13B1.3900
C2—H20.995 (19)C12B—C17B1.3900
C3—C41.378 (3)C13B—C14B1.3900
C3—H30.97 (2)C13B—H13B0.9300
C4—C51.375 (2)C14B—C15B1.3900
C4—H40.98 (2)C14B—H14B0.9300
C5—C61.387 (2)C15B—C16B1.3900
C5—H50.982 (19)C15B—H15B0.9300
C7—C81.523 (2)C16B—C17B1.3900
C9—C101.386 (2)C16B—H16B0.9300
C10—C111.382 (2)C17B—H17B0.9300
C7—N1—C6125.12 (12)N4—C11—C12A125.1 (2)
C7—N1—H1117.6 (13)C10—C11—C12A128.7 (2)
C6—N1—H1117.1 (13)N4—C11—C12B122.0 (2)
C8—N2—C1123.34 (12)C10—C11—C12B131.6 (2)
C8—N2—C9116.96 (12)C13A—C12A—C17A120.0
C1—N2—C9119.30 (12)C13A—C12A—C11120.9 (3)
C9—N3—N4103.91 (12)C17A—C12A—C11118.8 (3)
N3—N4—C11112.65 (12)C14A—C13A—C12A120.0
N3—N4—H4A117.3 (12)C14A—C13A—H13A120.0
C11—N4—H4A130.0 (12)C12A—C13A—H13A120.0
C2—C1—C6119.61 (14)C13A—C14A—C15A120.0
C2—C1—N2121.96 (13)C13A—C14A—H14A120.0
C6—C1—N2118.41 (13)C15A—C14A—H14A120.0
C3—C2—C1119.81 (16)C16A—C15A—C14A120.0
C3—C2—H2120.5 (11)C16A—C15A—H15A120.0
C1—C2—H2119.7 (11)C14A—C15A—H15A120.0
C2—C3—C4120.40 (17)C17A—C16A—C15A120.0
C2—C3—H3119.1 (13)C17A—C16A—H16A120.0
C4—C3—H3120.5 (13)C15A—C16A—H16A120.0
C5—C4—C3120.46 (16)C16A—C17A—C12A120.0
C5—C4—H4119.1 (13)C16A—C17A—H17A120.0
C3—C4—H4120.5 (13)C12A—C17A—H17A120.0
C4—C5—C6119.79 (16)C13B—C12B—C17B120.0
C4—C5—H5120.5 (11)C13B—C12B—C11121.2 (4)
C6—C5—H5119.7 (11)C17B—C12B—C11118.8 (4)
C5—C6—C1119.90 (14)C14B—C13B—C12B120.0
C5—C6—N1120.81 (14)C14B—C13B—H13B120.0
C1—C6—N1119.27 (13)C12B—C13B—H13B120.0
O1—C7—N1124.84 (13)C13B—C14B—C15B120.0
O1—C7—C8119.10 (13)C13B—C14B—H14B120.0
N1—C7—C8116.06 (13)C15B—C14B—H14B120.0
O2—C8—N2123.54 (14)C16B—C15B—C14B120.0
O2—C8—C7118.70 (13)C16B—C15B—H15B120.0
N2—C8—C7117.74 (12)C14B—C15B—H15B120.0
N3—C9—C10113.04 (13)C15B—C16B—C17B120.0
N3—C9—N2117.48 (13)C15B—C16B—H16B120.0
C10—C9—N2129.48 (14)C17B—C16B—H16B120.0
C11—C10—C9104.29 (14)C16B—C17B—C12B120.0
C11—C10—H10127.6 (12)C16B—C17B—H17B120.0
C9—C10—H10128.1 (12)C12B—C17B—H17B120.0
N4—C11—C10106.11 (13)
C9—N3—N4—C110.11 (18)C1—N2—C9—C1090.1 (2)
C8—N2—C1—C2178.61 (14)N3—C9—C10—C110.1 (2)
C9—N2—C1—C26.0 (2)N2—C9—C10—C11179.94 (15)
C8—N2—C1—C60.0 (2)N3—N4—C11—C100.16 (19)
C9—N2—C1—C6172.63 (13)N3—N4—C11—C12A177.1 (2)
C6—C1—C2—C30.7 (2)N3—N4—C11—C12B174.1 (3)
N2—C1—C2—C3177.98 (16)C9—C10—C11—N40.13 (18)
C1—C2—C3—C40.8 (3)C9—C10—C11—C12A176.9 (3)
C2—C3—C4—C51.6 (3)C9—C10—C11—C12B173.4 (3)
C3—C4—C5—C60.9 (3)N4—C11—C12A—C13A13.0 (4)
C4—C5—C6—C10.5 (2)C10—C11—C12A—C13A170.8 (2)
C4—C5—C6—N1178.86 (15)N4—C11—C12A—C17A172.5 (2)
C2—C1—C6—C51.3 (2)C10—C11—C12A—C17A3.7 (4)
N2—C1—C6—C5177.39 (13)C17A—C12A—C13A—C14A0.0
C2—C1—C6—N1179.67 (14)C11—C12A—C13A—C14A174.4 (3)
N2—C1—C6—N11.0 (2)C12A—C13A—C14A—C15A0.0
C7—N1—C6—C5175.77 (14)C13A—C14A—C15A—C16A0.0
C7—N1—C6—C12.6 (2)C14A—C15A—C16A—C17A0.0
C6—N1—C7—O1176.34 (14)C15A—C16A—C17A—C12A0.0
C6—N1—C7—C82.8 (2)C13A—C12A—C17A—C16A0.0
C1—N2—C8—O2178.50 (14)C11—C12A—C17A—C16A174.5 (3)
C9—N2—C8—O25.8 (2)N4—C11—C12B—C13B22.4 (4)
C1—N2—C8—C70.3 (2)C10—C11—C12B—C13B164.9 (3)
C9—N2—C8—C7172.48 (12)N4—C11—C12B—C17B159.5 (3)
O1—C7—C8—O20.7 (2)C10—C11—C12B—C17B13.2 (5)
N1—C7—C8—O2179.93 (14)C17B—C12B—C13B—C14B0.0
O1—C7—C8—N2177.60 (13)C11—C12B—C13B—C14B178.1 (4)
N1—C7—C8—N21.6 (2)C12B—C13B—C14B—C15B0.0
N4—N3—C9—C100.02 (19)C13B—C14B—C15B—C16B0.0
N4—N3—C9—N2179.97 (13)C14B—C15B—C16B—C17B0.0
C8—N2—C9—N383.11 (18)C15B—C16B—C17B—C12B0.0
C1—N2—C9—N389.94 (18)C13B—C12B—C17B—C16B0.0
C8—N2—C9—C1096.9 (2)C11—C12B—C17B—C16B178.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.92 (2)2.10 (2)2.9448 (17)152.1 (18)
N1—H1···N3ii0.92 (2)2.45 (2)3.0160 (18)119.8 (17)
N4—H4A···O1iii0.917 (19)2.276 (19)3.1851 (18)171.0 (16)
N4—H4A···O2iii0.917 (19)2.399 (18)2.9409 (18)117.8 (14)
C5—H5···O2i0.982 (19)2.552 (18)3.311 (2)134.1 (13)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rösner, M., Rübsamen-Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., et al. (1995). Antimicrob. Agents Chemother. 39, 2253–2257.  CrossRef CAS PubMed Google Scholar
First citationNoolvi, M. N., Patel, H. M., Bhardwaj, V. & Chauhan, A. (2011). Eur. J. Med. Chem. 46, 2327–2346.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVieira, M., Pinheiro, C., Fernandes, R., Noronha, J. P. & Prudêncio, C. (2014). Microbiol. Res. 169, 287–293.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds