organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-[5-(Di­phenyl­amino)­penta-2,4-diyn-1-yl]benzamide

aDepartment of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@center.wakayama-u.ac.jp

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 14 February 2017; accepted 18 February 2017; online 24 February 2017)

In the title compound, C24H18N2O1, the ynamine moiety has a near-planar structure (r.m.s. deviation = 0.0200 Å), and makes dihedral angles of 52.99 (7) and 27.91 (7)° with the phenyl rings. In the crystal, the mol­ecules exhibit a dimeric form owing to bifurcated C—H⋯π inter­actions within a centrosymmetric dimer. Inter­molecular N—H⋯O hydrogen bonds are also formed along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound is a di­acetyl­ene derivative. Solid-state polymerization is known to proceed for some di­acetyl­ene derivatives in a specific mol­ecular arrangement. Mainly, two conditions for the mol­ecular arrangement are required for the polymerization: (i) the mol­ecules stack one-dimensionally with repeating inter­vals of 4.8–5.6 Å; (ii) the di­acetyl­ene moieties of the mol­ecules have an inclination angle of 40–50° with the stacking axis. In order to realize such an ideal stacking structure, several kinds of inter­molecular hydrogen bonds are utilized (Lauher et al., 2008[Lauher, J. W., Fowler, F. W. & Goroff, N. S. (2008). Acc. Chem. Res. 41, 1215-1229.]). In the title compound, a phenyl­amide group is introduced to control the mol­ecular arrangement.

In the title compound, Fig. 1[link], the ynamine moiety has a near-planar structure (r.m.s. deviation = 0.0200 Å), making dihedral angles with the C1–C6 and C7–C12 phenyl rings of 52.99 (7) and 27.91 (7)°, respectively. The N2—C13 bond length is in good agreement with those reported (Tokutome et al., 2012[Tokutome, Y., Kubo, N. & Okuno, T. (2012). J. Mol. Struct. 1029, 135-141.], 2013[Tokutome, Y. & Okuno, T. (2013). J. Mol. Struct. 1047, 136-142.]; Tabata & Okuno (2011[Tabata, H. & Okuno, T. (2011). Acta Cryst. E67, o3169.]); Tabata et al., 2012[Tabata, H., Tokoyama, H., Yamakado, H. & Okuno, T. (2012). J. Mater. Chem. 22, 115-122.]). The N1/O1/C18/C19 amide group has an almost planar form (r.m.s. deviation = 0.0027 Å) and makes a dihedral angle of 17.63 (8)° with the C19–C24 phenyl ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the crystal, the mol­ecules make a dimeric form owing to bifurcated C—H⋯π inter­actions within a centrosymmetric dimer, where the H3⋯C14i and H3⋯C15i [symmetry code: (i) −x + 1, −y + 1, −z + 1] distances are 2.81 and 2.74 Å, as shown in Fig. 2[link]. Inter­molecular N—H⋯O hydrogen bonds (Table 1[link]) are also formed along the b-axis direction. Although the inter­molecular N—H⋯O hydrogen bonds are formed as designed, the C—H⋯π inter­actions are thought to prevent a regular stack with translation.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯C14i 0.95 2.81 3.673 (4) 152
C3—H3⋯C15i 0.95 2.74 3.554 (4) 144
N1—H1⋯O1ii 0.85 (3) 2.00 (3) 2.771 (3) 149 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the inter­molecular inter­actions in the title compound. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x, y + [{1\over 2}], −z + [{1\over 2}].]

Synthesis and crystallization

A mixture of N-ethynyl-N-phenyl­aniline (1.16 g, 6.0 mmol) and N-(prop-2-yn-1-yl)benzamide (0.80 g, 5.0 mmol) in acetone (35 ml) were reacted in the presence of Cu-TMEDA catalyst and oxygen for 12 h at 253 K. (Hay, 1962[Hay, A. S. (1962). J. Org. Chem. 27, 3320-3321.]) The solution was concentrated and extracted with chloro­form. The organic layer was washed with ammonium hydroxide and dried over sodium sulfate. After filtration, it was concentrated under reduced pressure. The residual solid was purified by column chromatography (SiO2) to give 0.87 g (50%) of the title compound as a colourless solid. Single crystals of sufficient quality were obtained by slow evaporation from a di­chloro­methane–hexane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H18N2O
Mr 350.42
Crystal system, space group Monoclinic, P21/c
Temperature (K) 93
a, b, c (Å) 12.486 (7), 9.738 (5), 16.089 (9)
β (°) 109.518 (6)
V3) 1843.8 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.10 × 0.07 × 0.04
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.995, 0.997
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 14614, 4155, 2929
Rint 0.062
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.162, 1.06
No. of reflections 4155
No. of parameters 248
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.58, −0.32
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXD2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXD2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

N-[5-(Diphenylamino)penta-2,4-diyn-1-yl]benzamide top
Crystal data top
C24H18N2OF(000) = 736.00
Mr = 350.42Dx = 1.262 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 12.486 (7) ÅCell parameters from 4684 reflections
b = 9.738 (5) Åθ = 2.1–31.2°
c = 16.089 (9) ŵ = 0.08 mm1
β = 109.518 (6)°T = 93 K
V = 1843.8 (17) Å3Block, colorless
Z = 40.10 × 0.07 × 0.04 mm
Data collection top
Rigaku Saturn724+
diffractometer
2929 reflections with F2 > 2.0σ(F2)
Detector resolution: 7.111 pixels mm-1Rint = 0.062
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 1616
Tmin = 0.995, Tmax = 0.997k = 1212
14614 measured reflectionsl = 2020
4155 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.1006P]
where P = (Fo2 + 2Fc2)/3
4155 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.32 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02051 (13)0.30092 (14)0.22465 (9)0.0308 (4)
N10.00394 (14)0.51968 (17)0.26271 (10)0.0229 (4)
N20.41255 (13)0.36679 (17)0.68882 (10)0.0248 (4)
C10.51710 (16)0.3440 (2)0.67100 (12)0.0224 (4)
C20.55674 (17)0.4437 (2)0.62730 (13)0.0276 (4)
C30.65474 (18)0.4186 (2)0.60743 (14)0.0300 (5)
C40.71294 (17)0.2951 (2)0.63095 (13)0.0285 (5)
C50.67219 (18)0.1961 (2)0.67443 (13)0.0286 (5)
C60.57419 (17)0.2200 (2)0.69492 (13)0.0256 (4)
C70.40326 (16)0.34256 (19)0.77368 (12)0.0212 (4)
C80.30013 (16)0.30123 (19)0.78110 (12)0.0228 (4)
C90.29067 (17)0.2862 (2)0.86391 (12)0.0263 (4)
C100.38291 (19)0.3101 (2)0.93921 (13)0.0287 (5)
C110.48588 (18)0.3483 (2)0.93129 (13)0.0285 (5)
C120.49718 (16)0.3653 (2)0.84927 (13)0.0250 (4)
C130.31941 (16)0.3997 (2)0.62021 (12)0.0233 (4)
C140.23749 (16)0.4286 (2)0.55789 (12)0.0249 (4)
C150.14353 (16)0.4492 (2)0.48386 (12)0.0234 (4)
C160.06265 (16)0.4636 (2)0.41808 (12)0.0227 (4)
C170.03368 (16)0.4829 (2)0.33613 (12)0.0233 (4)
C180.03405 (16)0.42482 (19)0.21431 (12)0.0221 (4)
C190.08670 (16)0.47240 (19)0.14822 (12)0.0215 (4)
C200.13380 (17)0.6029 (2)0.15128 (13)0.0265 (4)
C210.18493 (18)0.6402 (2)0.09050 (13)0.0315 (5)
C220.18987 (18)0.5483 (2)0.02646 (14)0.0323 (5)
C230.14320 (18)0.4188 (2)0.02273 (13)0.0302 (5)
C240.09132 (17)0.3809 (2)0.08340 (12)0.0256 (4)
H10.012 (2)0.605 (3)0.2538 (16)0.045 (7)*
H20.517280.528220.611120.0331*
H30.682470.486590.577420.0360*
H40.780190.278740.617260.0342*
H50.711440.111410.690360.0343*
H60.546450.152160.7250.0308*
H80.236730.28350.729730.0274*
H90.22010.259070.869130.0315*
H100.375610.30050.995830.0344*
H110.549670.362940.982910.0342*
H120.5680.392140.844420.0300*
H17A0.078530.397040.321810.0280*
H17B0.083710.556280.344980.0280*
H200.130760.666450.195250.0318*
H210.216750.729360.092780.0378*
H220.225350.574090.015020.0387*
H230.14660.355610.021320.0362*
H240.05890.2920.080480.0307*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0386 (9)0.0184 (7)0.0381 (8)0.0005 (6)0.0164 (7)0.0003 (6)
N10.0270 (9)0.0173 (8)0.0230 (8)0.0018 (7)0.0065 (7)0.0017 (7)
N20.0176 (8)0.0343 (9)0.0223 (8)0.0021 (7)0.0062 (7)0.0071 (7)
C10.0184 (9)0.0279 (10)0.0200 (9)0.0014 (7)0.0051 (7)0.0019 (8)
C20.0263 (10)0.0272 (10)0.0303 (11)0.0004 (8)0.0110 (9)0.0035 (9)
C30.0280 (11)0.0343 (11)0.0321 (11)0.0063 (9)0.0157 (9)0.0004 (9)
C40.0207 (10)0.0366 (12)0.0290 (11)0.0012 (8)0.0093 (9)0.0095 (9)
C50.0266 (11)0.0283 (11)0.0284 (10)0.0041 (8)0.0057 (9)0.0050 (9)
C60.0255 (10)0.0238 (10)0.0264 (10)0.0028 (8)0.0071 (8)0.0006 (8)
C70.0205 (9)0.0219 (9)0.0213 (9)0.0032 (7)0.0069 (8)0.0021 (7)
C80.0202 (9)0.0236 (9)0.0234 (9)0.0000 (7)0.0055 (8)0.0022 (8)
C90.0239 (10)0.0274 (11)0.0289 (11)0.0012 (8)0.0106 (9)0.0007 (8)
C100.0360 (12)0.0304 (11)0.0206 (9)0.0040 (9)0.0107 (9)0.0027 (8)
C110.0278 (11)0.0310 (11)0.0222 (10)0.0037 (9)0.0022 (8)0.0006 (8)
C120.0183 (9)0.0268 (10)0.0283 (10)0.0010 (8)0.0054 (8)0.0028 (8)
C130.0199 (9)0.0284 (10)0.0233 (9)0.0008 (8)0.0093 (8)0.0042 (8)
C140.0212 (10)0.0326 (11)0.0233 (9)0.0005 (8)0.0105 (8)0.0034 (8)
C150.0206 (10)0.0283 (10)0.0251 (10)0.0038 (8)0.0126 (8)0.0038 (8)
C160.0201 (9)0.0261 (10)0.0240 (9)0.0013 (8)0.0100 (8)0.0018 (8)
C170.0196 (9)0.0248 (10)0.0241 (9)0.0029 (8)0.0053 (8)0.0016 (8)
C180.0204 (9)0.0188 (9)0.0222 (9)0.0030 (7)0.0006 (7)0.0010 (8)
C190.0182 (9)0.0210 (9)0.0219 (9)0.0034 (7)0.0021 (7)0.0019 (8)
C200.0243 (10)0.0267 (10)0.0246 (10)0.0030 (8)0.0028 (8)0.0014 (8)
C210.0258 (11)0.0346 (12)0.0306 (11)0.0061 (9)0.0047 (9)0.0042 (9)
C220.0250 (11)0.0428 (13)0.0292 (11)0.0044 (9)0.0094 (9)0.0093 (10)
C230.0283 (11)0.0344 (11)0.0267 (10)0.0089 (9)0.0076 (9)0.0010 (9)
C240.0234 (10)0.0245 (10)0.0262 (10)0.0058 (8)0.0048 (8)0.0017 (8)
Geometric parameters (Å, º) top
O1—C181.237 (2)C19—C241.388 (3)
N1—C171.454 (3)C20—C211.383 (3)
N1—C181.340 (3)C21—C221.382 (3)
N2—C11.444 (3)C22—C231.382 (3)
N2—C71.428 (3)C23—C241.390 (3)
N2—C131.348 (2)N1—H10.85 (3)
C1—C21.383 (3)C2—H20.950
C1—C61.390 (3)C3—H30.950
C2—C31.386 (3)C4—H40.950
C3—C41.391 (3)C5—H50.950
C4—C51.384 (3)C6—H60.950
C5—C61.389 (3)C8—H80.950
C7—C81.392 (3)C9—H90.950
C7—C121.397 (2)C10—H100.950
C8—C91.384 (3)C11—H110.950
C9—C101.384 (3)C12—H120.950
C10—C111.384 (4)C17—H17A0.990
C11—C121.383 (3)C17—H17B0.990
C13—C141.202 (2)C20—H200.950
C14—C151.379 (2)C21—H210.950
C15—C161.202 (2)C22—H220.950
C16—C171.470 (2)C23—H230.950
C18—C191.498 (3)C24—H240.950
C19—C201.395 (3)
O1···C163.373 (3)C17···H5x3.3890
O1···C172.762 (3)C17···H8viii3.3058
O1···C242.810 (3)C17···H20i3.2884
N1···C153.468 (3)C17···H24iii3.3524
N1···C202.906 (3)C18···H1i3.24 (3)
C1···C42.770 (3)C18···H8ii3.1877
C1···C122.968 (3)C18···H9ii3.3078
C1···C143.455 (3)C19···H8ii3.1300
C2···C52.781 (3)C19···H23ix3.3890
C2···C132.958 (3)C20···H17Aiii3.0108
C3···C62.772 (3)C20···H23ix3.4498
C6···C73.065 (3)C21···H12iv2.9248
C6···C123.269 (3)C21···H17Aiii3.3558
C6···C133.474 (3)C21···H24ix3.4170
C7···C102.777 (3)C22···H4xvi3.3317
C7···C143.498 (3)C22···H10xvii3.4938
C8···C112.772 (3)C22···H11iv3.4167
C8···C132.845 (3)C22···H12iv3.0977
C9···C122.776 (3)C22···H24ix3.3848
C16···C183.199 (3)C23···H9xvii3.3216
C19···C222.780 (4)C23···H10xvii3.2823
C20···C232.770 (3)C24···H8ii2.9232
C21···C242.769 (3)C24···H17Bi3.3765
O1···N1i2.771 (3)H1···O1iii2.00 (3)
O1···C8ii3.447 (3)H1···C4iv3.46 (2)
O1···C9ii3.474 (3)H1···C18iii3.24 (3)
O1···C17i3.268 (3)H1···H4iv2.9546
N1···O1iii2.771 (3)H1···H8viii3.3814
C3···C15iv3.554 (4)H1···H9viii3.1978
C4···C20iv3.528 (3)H1···H17Aiii3.3077
C6···C12v3.578 (3)H1···H24iii3.5752
C8···O1vi3.447 (3)H2···C3iv3.4927
C9···O1vi3.474 (3)H2···C7vii3.5441
C12···C6vii3.578 (3)H2···C8vii3.5540
C14···C23vi3.564 (3)H2···C9vii3.4025
C15···C3iv3.554 (4)H2···C10vii3.2279
C15···C16viii3.543 (3)H2···C11vii3.1878
C16···C15viii3.543 (3)H2···C12vii3.3599
C16···C16viii3.557 (3)H2···H2iv3.4989
C17···O1iii3.268 (3)H2···H3iv3.2230
C19···C23ix3.414 (3)H2···H6vii3.2317
C20···C4iv3.528 (3)H2···H11vii3.5730
C22···C24ix3.432 (3)H3···C9vii3.0499
C23···C14ii3.564 (3)H3···C10vii3.2432
C23···C19ix3.414 (3)H3···C13iv3.3597
C23···C24ix3.458 (3)H3···C14iv2.8059
C24···C22ix3.432 (3)H3···C15iv2.7413
C24···C23ix3.458 (3)H3···C16iv3.1961
O1···H13.00 (3)H3···H2iv3.2230
O1···H17A2.4780H3···H9vii2.9258
O1···H242.5220H3···H10vii3.2692
N1···H202.6223H4···O1xii3.0210
N2···H22.6146H4···N1iv3.3719
N2···H62.6176H4···C15iv3.4072
N2···H82.6222H4···C16iv3.3491
N2···H122.6170H4···C22xi3.3317
C1···H33.2457H4···H1iv2.9546
C1···H53.2575H4···H11ii3.2716
C1···H122.6877H4···H20iv2.8948
C2···H43.2697H4···H21xi3.4262
C2···H63.2681H4···H22xi2.5702
C2···H123.4852H5···C7v3.1294
C3···H53.2559H5···C8v3.0658
C4···H23.2717H5···C9v3.2831
C4···H63.2634H5···C10v3.5636
C5···H33.2538H5···C12v3.4389
C6···H23.2698H5···C17xii3.3890
C6···H43.2637H5···H8v3.4222
C6···H122.9540H5···H11ii3.2830
C7···H62.8606H5···H17Axii2.7660
C7···H93.2552H5···H17Bxii3.3385
C7···H113.2560H5···H20iv3.0863
C8···H103.2632H5···H22xi3.1939
C8···H123.2759H6···N2v3.0712
C9···H113.2474H6···C7v3.0781
C10···H83.2631H6···C12v3.0155
C10···H123.2649H6···C13v3.5021
C11···H93.2481H6···H2v3.2317
C12···H63.0831H6···H12v2.9384
C12···H83.2756H6···H21iv3.5884
C12···H103.2641H8···O1vi2.7971
C13···H22.8167H8···C17viii3.3058
C13···H82.5819H8···C18vi3.1877
C14···H23.4466H8···C19vi3.1300
C14···H83.1079H8···C24vi2.9232
C15···H17A3.1485H8···H1viii3.3814
C15···H17B3.1456H8···H5vii3.4222
C16···H12.86 (3)H8···H17Bviii2.4485
C18···H17A2.5817H8···H24vi2.7703
C18···H17B3.2072H9···O1vi2.8433
C18···H202.7085H9···C14vi3.4887
C18···H242.6176H9···C15vi3.1005
C19···H12.55 (3)H9···C16vi3.1969
C19···H213.2652H9···C18vi3.3078
C19···H233.2645H9···C23xiii3.3216
C20···H12.59 (3)H9···H1viii3.1978
C20···H223.2540H9···H3v2.9258
C20···H243.2601H9···H22xiii3.5787
C21···H233.2515H9···H23xiii2.4318
C22···H203.2532H10···N2vi3.3987
C22···H243.2569H10···C1vi3.1174
C23···H213.2511H10···C2vi3.4708
C24···H203.2591H10···C6vi3.3378
C24···H223.2586H10···C13vi3.0389
H1···H17A2.7192H10···C14vi3.1782
H1···H17B2.2293H10···C22xiii3.4938
H1···H202.0941H10···C23xiii3.2823
H2···H32.3366H10···H3v3.2692
H3···H42.3396H10···H11xiv3.3934
H4···H52.3345H10···H22xiii3.2294
H5···H62.3408H10···H23xiii2.8308
H6···H122.9798H11···C3vi3.3907
H8···H92.3326H11···C4vi2.9920
H9···H102.3332H11···C5vi3.0027
H10···H112.3320H11···C6vi3.4181
H11···H122.3321H11···C10xiv3.4217
H20···H212.3300H11···C11xiv3.2281
H21···H222.3303H11···C22iv3.4167
H22···H232.3317H11···H2v3.5730
H23···H242.3375H11···H4vi3.2716
O1···H1i2.00 (3)H11···H5vi3.2830
O1···H4x3.0210H11···H10xiv3.3934
O1···H8ii2.7971H11···H11xiv3.0695
O1···H9ii2.8433H11···H22iv2.7503
O1···H17Bi2.8537H12···C21iv2.9248
O1···H20i2.9274H12···C22iv3.0977
N1···H4iv3.3719H12···H6vii2.9384
N2···H6vii3.0712H12···H21iv2.7981
N2···H10ii3.3987H12···H22iv3.0931
C1···H10ii3.1174H17A···C5x3.3469
C2···H10ii3.4708H17A···C20i3.0108
C3···H2iv3.4927H17A···C21i3.3558
C3···H11ii3.3907H17A···H1i3.3077
C3···H20iv3.5010H17A···H5x2.7660
C4···H1iv3.46 (2)H17A···H20i2.3287
C4···H11ii2.9920H17A···H21i3.0195
C4···H20iv2.8499H17B···O1iii2.8537
C4···H22xi3.1086H17B···C8viii3.1112
C5···H11ii3.0027H17B···C13viii3.2031
C5···H17Axii3.3469H17B···C14viii2.8558
C5···H20iv2.9654H17B···C15viii3.0852
C5···H22xi3.4379H17B···C24iii3.3765
C6···H10ii3.3378H17B···H5x3.3385
C6···H11ii3.4181H17B···H8viii2.4485
C6···H21iv3.5731H17B···H24iii2.5602
C7···H2v3.5441H20···O1iii2.9274
C7···H5vii3.1294H20···C3iv3.5010
C7···H6vii3.0781H20···C4iv2.8499
C8···H2v3.5540H20···C5iv2.9654
C8···H5vii3.0658H20···C17iii3.2884
C8···H17Bviii3.1112H20···H4iv2.8948
C9···H2v3.4025H20···H5iv3.0863
C9···H3v3.0499H20···H17Aiii2.3287
C9···H5vii3.2831H21···C6iv3.5731
C9···H23xiii3.0533H21···C12iv3.5003
C10···H2v3.2279H21···C14xviii3.4014
C10···H3v3.2432H21···C15xviii3.5546
C10···H5vii3.5636H21···H4xvi3.4262
C10···H11xiv3.4217H21···H6iv3.5884
C10···H22xiii3.4622H21···H12iv2.7981
C10···H23xiii3.2492H21···H17Aiii3.0195
C11···H2v3.1878H22···C4xvi3.1086
C11···H11xiv3.2281H22···C5xvi3.4379
C11···H22iv3.4844H22···C10xvii3.4622
C12···H2v3.3599H22···C11iv3.4844
C12···H5vii3.4389H22···H4xvi2.5702
C12···H6vii3.0155H22···H5xvi3.1939
C12···H21iv3.5003H22···H9xvii3.5787
C13···H3iv3.3597H22···H10xvii3.2294
C13···H6vii3.5021H22···H11iv2.7503
C13···H10ii3.0389H22···H12iv3.0931
C13···H17Bviii3.2031H22···H24ix3.5928
C13···H23vi3.5690H23···C9xvii3.0533
C14···H3iv2.8059H23···C10xvii3.2492
C14···H9ii3.4887H23···C13ii3.5690
C14···H10ii3.1782H23···C14ii3.0996
C14···H17Bviii2.8558H23···C15ii2.9697
C14···H21xv3.4014H23···C16ii3.3206
C14···H23vi3.0996H23···C19ix3.3890
C14···H24vi3.2035H23···C20ix3.4498
C15···H3iv2.7413H23···H9xvii2.4318
C15···H4iv3.4072H23···H10xvii2.8308
C15···H9ii3.1005H24···C14ii3.2035
C15···H17Bviii3.0852H24···C15ii3.1854
C15···H21xv3.5546H24···C16i3.5434
C15···H23vi2.9697H24···C17i3.3524
C15···H24vi3.1854H24···C21ix3.4170
C16···H3iv3.1961H24···C22ix3.3848
C16···H4iv3.3491H24···H1i3.5752
C16···H9ii3.1969H24···H8ii2.7703
C16···H23vi3.3206H24···H17Bi2.5602
C16···H24iii3.5434H24···H22ix3.5928
C17—N1—C18122.13 (17)C18—N1—H1120 (2)
C1—N2—C7122.14 (14)C1—C2—H2120.416
C1—N2—C13117.63 (17)C3—C2—H2120.421
C7—N2—C13119.93 (18)C2—C3—H3119.640
N2—C1—C2119.60 (17)C4—C3—H3119.651
N2—C1—C6119.50 (19)C3—C4—H4120.235
C2—C1—C6120.9 (2)C5—C4—H4120.231
C1—C2—C3119.16 (19)C4—C5—H5119.828
C2—C3—C4120.7 (2)C6—C5—H5119.814
C3—C4—C5119.5 (2)C1—C6—H6120.311
C4—C5—C6120.36 (19)C5—C6—H6120.311
C1—C6—C5119.4 (2)C7—C8—H8120.256
N2—C7—C8120.19 (15)C9—C8—H8120.261
N2—C7—C12119.58 (19)C8—C9—H9119.637
C8—C7—C12120.19 (19)C10—C9—H9119.637
C7—C8—C9119.48 (16)C9—C10—H10120.281
C8—C9—C10120.7 (2)C11—C10—H10120.288
C9—C10—C11119.4 (2)C10—C11—H11119.538
C10—C11—C12120.92 (17)C12—C11—H11119.542
C7—C12—C11119.2 (2)C7—C12—H12120.393
N2—C13—C14178.7 (2)C11—C12—H12120.383
C13—C14—C15174.6 (2)N1—C17—H17A109.264
C14—C15—C16177.9 (2)N1—C17—H17B109.266
C15—C16—C17178.1 (2)C16—C17—H17A109.270
N1—C17—C16111.75 (17)C16—C17—H17B109.274
O1—C18—N1121.1 (2)H17A—C17—H17B107.935
O1—C18—C19120.60 (19)C19—C20—H20119.896
N1—C18—C19118.29 (17)C21—C20—H20119.889
C18—C19—C20122.46 (18)C20—C21—H21119.898
C18—C19—C24118.24 (17)C22—C21—H21119.896
C20—C19—C24119.3 (2)C21—C22—H22119.989
C19—C20—C21120.2 (2)C23—C22—H22119.981
C20—C21—C22120.2 (2)C22—C23—H23119.987
C21—C22—C23120.0 (2)C24—C23—H23119.985
C22—C23—C24120.0 (2)C19—C24—H24119.887
C19—C24—C23120.24 (19)C23—C24—H24119.871
C17—N1—H1118 (2)
C17—N1—C18—O17.2 (2)N2—C7—C12—C11176.76 (15)
C17—N1—C18—C19171.73 (13)C8—C7—C12—C111.0 (3)
C18—N1—C17—C1684.99 (19)C12—C7—C8—C91.6 (3)
C1—N2—C7—C8149.21 (16)C7—C8—C9—C100.8 (3)
C1—N2—C7—C1233.1 (2)C8—C9—C10—C110.6 (3)
C7—N2—C1—C2132.38 (16)C9—C10—C11—C121.3 (3)
C7—N2—C1—C650.1 (2)C10—C11—C12—C70.5 (3)
C13—N2—C1—C253.8 (2)O1—C18—C19—C20160.81 (15)
C13—N2—C1—C6123.66 (17)O1—C18—C19—C2417.2 (2)
C13—N2—C7—C824.5 (3)N1—C18—C19—C2018.1 (2)
C13—N2—C7—C12153.28 (16)N1—C18—C19—C24163.86 (14)
N2—C1—C2—C3177.48 (13)C18—C19—C20—C21177.75 (14)
N2—C1—C6—C5177.35 (13)C18—C19—C24—C23177.58 (13)
C2—C1—C6—C50.1 (3)C20—C19—C24—C230.5 (2)
C6—C1—C2—C30.0 (3)C24—C19—C20—C210.3 (2)
C1—C2—C3—C40.0 (3)C19—C20—C21—C220.1 (3)
C2—C3—C4—C50.2 (3)C20—C21—C22—C230.3 (3)
C3—C4—C5—C60.3 (3)C21—C22—C23—C240.0 (3)
C4—C5—C6—C10.3 (3)C22—C23—C24—C190.4 (3)
N2—C7—C8—C9176.13 (15)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y1/2, z+3/2; (vi) x, y+1/2, z+1/2; (vii) x+1, y+1/2, z+3/2; (viii) x, y+1, z+1; (ix) x, y+1, z; (x) x1, y+1/2, z1/2; (xi) x+1, y1/2, z+1/2; (xii) x+1, y+1/2, z+1/2; (xiii) x, y, z+1; (xiv) x+1, y+1, z+2; (xv) x, y+3/2, z+1/2; (xvi) x+1, y+1/2, z+1/2; (xvii) x, y, z1; (xviii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···C14iv0.952.813.673 (4)152
C3—H3···C15iv0.952.743.554 (4)144
N1—H1···O1iii0.85 (3)2.00 (3)2.771 (3)149 (3)
Symmetry codes: (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: Japan Science and Technology Agency, Research for Promoting Technological Seeds

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHay, A. S. (1962). J. Org. Chem. 27, 3320–3321.  CrossRef CAS Web of Science Google Scholar
First citationLauher, J. W., Fowler, F. W. & Goroff, N. S. (2008). Acc. Chem. Res. 41, 1215–1229.  CrossRef PubMed CAS Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabata, H. & Okuno, T. (2011). Acta Cryst. E67, o3169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTabata, H., Tokoyama, H., Yamakado, H. & Okuno, T. (2012). J. Mater. Chem. 22, 115–122.  Web of Science CSD CrossRef CAS Google Scholar
First citationTokutome, Y., Kubo, N. & Okuno, T. (2012). J. Mol. Struct. 1029, 135–141.  CSD CrossRef CAS Google Scholar
First citationTokutome, Y. & Okuno, T. (2013). J. Mol. Struct. 1047, 136–142.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds