organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-2-(4-Meth­­oxy­anilino)-1,4-di­phenyl­but-2-ene-1,4-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India, and cDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: devarajegowda@yahoo.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 18 December 2016; accepted 10 January 2017; online 3 February 2017)

In the mol­ecule of the title compound, C23H19NO3, the mean plane of the meth­oxy­phenyl ring makes dihedral angles of 51.63 (8) and 50.86 (8)° with the terminal phenyl rings. An intra­molecular N—H⋯O hydrogen bond occurs. The crystal structure features C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

β-Enamino­nes containing a conjugated –N—C=C—C=O system can be used to synthesise many heterocycles: for instance, biologically important heterocycles, such as isoxazoles (Lin et al., 1980[Lin, Y.-I. & Lang, S. A. (1980). J. Org. Chem. 45, 4857-4860.]), pyrroles (Yan et al., 2010[Yan, R. L., Luo, J., Wang, C. X., Ma, C. W., Huang, G. S. & Liang, Y. M. (2010). J. Org. Chem. 75, 5395-5397.]), indoles (Würtz et al., 2008[Würtz, S., Rakshit, S., Neumann, J. J., Dröge, T. & Glorius, F. (2008). Angew. Chem. 120, 7340-7343.]) and pyrazoles (Neumann et al., 2010[Neumann, J. J., Suri, M. & Glorius, F. (2010). Angew. Chem. Int. Ed. 49, 7790-7794.]), have been synthesized conveniently from suitably substituted β-enamino­nes. As part of our studies in this area, the title compound was synthesized and its single-crystal structure has been reported here.

In the mol­ecular structure of the title compound (Fig. 1[link]), the mean plane of the meth­oxy­phenyl ring (C6–C11) makes dihedral angles of 51.63 (8) and 50.86 (8)°, respectively, with the C14–C19 and C22–C27 phenyl rings. An intra­molecular N—H⋯O hydrogen bond occurs. The crystal structure features C—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O1 0.86 1.96 2.6346 (17) 135
C7—H7⋯O1i 0.93 2.51 3.334 (2) 148
C26—H26⋯O2ii 0.93 2.58 3.261 (2) 130
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2]
Figure 2
Packing diagram of the mol­ecule viewed parallel to the b axis.

Synthesis and crystallization

(Z)-2-Methyl­sulfanyl-1,4-di­phenyl­but-2-ene-1,4-dione (2.0 mmol, 1 equivalent), 4-meth­oxy­aniline (2.6 mmol, 1.6 equivalents) and 5 volume of acidic silica with respect to starting substrate was thoroughly ground using a pestle and mortar. The solid reaction mixture was transferred to an oven-dried 20 ml screw-cap reaction vial with magnetic stir-bar followed by the addition of anhydrous AlCl3 (0.03 equivalents). The reaction mixture was stirred vigorously for 6 h. After completion of the reaction (monitored by TLC), the crude reaction mixture was purified through silica-gel column chromatography. Crystals suitable for analysis were obtained from an ethyl acetate–hexane (2:8 v/v) solution by slow evaporation at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C23H19NO3
Mr 357.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.1567 (5), 8.5396 (4), 21.8019 (10)
β (°) 99.329 (2)
V3) 1865.96 (15)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.68
Crystal size (mm) 0.24 × 0.20 × 0.12
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction multi- scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.770, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18393, 3060, 2801
Rint 0.048
(sin θ/λ)max−1) 0.584
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.151, 1.06
No. of reflections 3060
No. of parameters 245
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.22
Computer programs: SMART and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(Z)-2-(4-Methoxyanilino)-1,4-diphenylbut-2-ene-1,4-dione top
Crystal data top
C23H19NO3Dx = 1.272 Mg m3
Mr = 357.39Melting point: 375 K
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 10.1567 (5) ÅCell parameters from 3060 reflections
b = 8.5396 (4) Åθ = 4.1–64.3°
c = 21.8019 (10) ŵ = 0.68 mm1
β = 99.329 (2)°T = 296 K
V = 1865.96 (15) Å3Prism, colourless
Z = 40.24 × 0.20 × 0.12 mm
F(000) = 752
Data collection top
Bruker SMART CCD area-detector
diffractometer
3060 independent reflections
Radiation source: fine-focus sealed tube2801 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω and φ scansθmax = 64.3°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.770, Tmax = 1.000k = 98
18393 measured reflectionsl = 2525
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.1038P)2 + 0.2139P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.151(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.23 e Å3
3060 reflectionsΔρmin = 0.22 e Å3
245 parametersExtinction correction: SHELXL2014 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0053 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64804 (12)0.77341 (13)0.62059 (5)0.0584 (3)
O20.87120 (11)0.58731 (12)0.44792 (5)0.0543 (3)
O30.37864 (16)0.77684 (17)0.26306 (6)0.0781 (4)
N40.63382 (13)0.67640 (14)0.50499 (6)0.0478 (3)
H40.59740.72710.53190.057*
C50.3437 (3)0.6556 (3)0.21998 (10)0.1011 (8)
H5A0.30130.69900.18120.152*
H5B0.42260.59990.21380.152*
H5C0.28340.58490.23550.152*
C60.44064 (16)0.7394 (2)0.32159 (7)0.0530 (4)
C70.46065 (16)0.86315 (19)0.36271 (7)0.0542 (4)
H70.43000.96240.35000.065*
C80.52575 (15)0.84044 (17)0.42243 (7)0.0489 (4)
H80.53990.92480.44970.059*
C90.57053 (14)0.69229 (17)0.44240 (7)0.0427 (4)
C100.54586 (14)0.56800 (17)0.40179 (7)0.0488 (4)
H100.57180.46770.41520.059*
C110.48277 (16)0.59083 (18)0.34112 (7)0.0536 (4)
H110.46890.50680.31370.064*
C120.74285 (14)0.59305 (15)0.52800 (6)0.0414 (4)
C130.81574 (13)0.50796 (16)0.48246 (6)0.0412 (4)
C140.81966 (13)0.33465 (16)0.48181 (6)0.0423 (4)
C150.87236 (17)0.2625 (2)0.43389 (8)0.0554 (4)
H150.90380.32320.40390.066*
C160.87819 (19)0.1019 (2)0.43071 (9)0.0671 (5)
H160.91210.05440.39820.080*
C170.83407 (18)0.0114 (2)0.47545 (10)0.0689 (5)
H170.83980.09710.47360.083*
C180.78127 (18)0.0815 (2)0.52307 (9)0.0642 (5)
H180.75150.01990.55320.077*
C190.77249 (15)0.24275 (18)0.52614 (7)0.0503 (4)
H190.73510.28960.55780.060*
C200.79907 (15)0.59469 (16)0.58952 (6)0.0455 (4)
H200.87180.52980.60260.055*
C210.75096 (16)0.69174 (16)0.63469 (7)0.0461 (4)
C220.82350 (16)0.69738 (17)0.70020 (7)0.0477 (4)
C230.94938 (19)0.6344 (2)0.71859 (8)0.0632 (5)
H230.99190.58330.68960.076*
C241.0125 (2)0.6467 (3)0.77957 (9)0.0729 (5)
H241.09770.60560.79130.088*
C250.9490 (2)0.7201 (2)0.82313 (8)0.0651 (5)
H250.99100.72790.86420.078*
C260.8240 (2)0.7811 (2)0.80563 (8)0.0709 (5)
H260.78080.82960.83500.085*
C270.7618 (2)0.7709 (2)0.74466 (8)0.0632 (5)
H270.67730.81400.73320.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0743 (8)0.0535 (6)0.0464 (6)0.0173 (5)0.0065 (5)0.0035 (5)
O20.0662 (7)0.0557 (7)0.0433 (6)0.0025 (5)0.0162 (5)0.0092 (5)
O30.0962 (10)0.0822 (9)0.0477 (7)0.0060 (7)0.0130 (6)0.0084 (6)
N40.0566 (7)0.0490 (7)0.0376 (7)0.0071 (5)0.0072 (5)0.0003 (5)
C50.1192 (19)0.115 (2)0.0568 (12)0.0020 (15)0.0224 (12)0.0074 (12)
C60.0529 (8)0.0607 (10)0.0437 (8)0.0016 (7)0.0023 (7)0.0077 (7)
C70.0605 (9)0.0458 (8)0.0551 (9)0.0084 (7)0.0059 (7)0.0102 (7)
C80.0550 (8)0.0419 (8)0.0490 (9)0.0034 (6)0.0065 (6)0.0023 (6)
C90.0452 (7)0.0441 (8)0.0388 (7)0.0002 (6)0.0066 (6)0.0030 (6)
C100.0539 (8)0.0401 (8)0.0500 (9)0.0001 (6)0.0010 (6)0.0014 (6)
C110.0570 (9)0.0516 (9)0.0495 (9)0.0013 (7)0.0005 (7)0.0077 (7)
C120.0502 (8)0.0363 (7)0.0379 (7)0.0023 (5)0.0074 (6)0.0026 (5)
C130.0451 (7)0.0460 (8)0.0313 (7)0.0020 (6)0.0021 (5)0.0017 (5)
C140.0411 (7)0.0457 (8)0.0380 (7)0.0002 (5)0.0006 (6)0.0029 (6)
C150.0570 (9)0.0612 (10)0.0483 (9)0.0011 (7)0.0098 (7)0.0084 (7)
C160.0661 (10)0.0616 (11)0.0727 (12)0.0084 (8)0.0087 (9)0.0224 (9)
C170.0610 (10)0.0450 (9)0.0956 (14)0.0039 (7)0.0023 (9)0.0125 (9)
C180.0670 (10)0.0454 (9)0.0779 (12)0.0060 (7)0.0053 (9)0.0073 (8)
C190.0527 (8)0.0468 (8)0.0516 (9)0.0031 (6)0.0088 (7)0.0001 (6)
C200.0556 (8)0.0439 (8)0.0368 (7)0.0047 (6)0.0067 (6)0.0005 (6)
C210.0606 (9)0.0379 (7)0.0402 (8)0.0014 (6)0.0091 (6)0.0021 (6)
C220.0640 (9)0.0410 (8)0.0385 (8)0.0022 (6)0.0094 (7)0.0011 (6)
C230.0714 (11)0.0756 (11)0.0427 (9)0.0093 (9)0.0094 (7)0.0030 (8)
C240.0747 (11)0.0884 (14)0.0515 (10)0.0096 (10)0.0023 (8)0.0019 (9)
C250.0878 (13)0.0673 (11)0.0378 (8)0.0092 (9)0.0031 (8)0.0025 (7)
C260.0919 (14)0.0795 (12)0.0417 (9)0.0064 (10)0.0122 (9)0.0135 (8)
C270.0756 (11)0.0681 (11)0.0458 (9)0.0108 (8)0.0095 (8)0.0095 (8)
Geometric parameters (Å, º) top
O1—C211.253 (2)C14—C151.393 (2)
O2—C131.2170 (16)C15—C161.374 (3)
O3—C61.366 (2)C15—H150.9300
O3—C51.405 (3)C16—C171.375 (3)
N4—C121.3433 (19)C16—H160.9300
N4—C91.4173 (19)C17—C181.380 (3)
N4—H40.8600C17—H170.9300
C5—H5A0.9600C18—C191.383 (2)
C5—H5B0.9600C18—H180.9300
C5—H5C0.9600C19—H190.9300
C6—C71.380 (2)C20—C211.432 (2)
C6—C111.384 (2)C20—H200.9300
C7—C81.375 (2)C21—C221.498 (2)
C7—H70.9300C22—C231.385 (2)
C8—C91.390 (2)C22—C271.387 (2)
C8—H80.9300C23—C241.383 (2)
C9—C101.379 (2)C23—H230.9300
C10—C111.387 (2)C24—C251.382 (3)
C10—H100.9300C24—H240.9300
C11—H110.9300C25—C261.368 (3)
C12—C201.3701 (19)C25—H250.9300
C12—C131.5166 (19)C26—C271.379 (3)
C13—C141.481 (2)C26—H260.9300
C14—C191.389 (2)C27—H270.9300
C6—O3—C5118.70 (16)C16—C15—H15119.9
C12—N4—C9128.91 (12)C14—C15—H15119.9
C12—N4—H4115.5C15—C16—C17120.21 (17)
C9—N4—H4115.5C15—C16—H16119.9
O3—C5—H5A109.5C17—C16—H16119.9
O3—C5—H5B109.5C16—C17—C18120.08 (16)
H5A—C5—H5B109.5C16—C17—H17120.0
O3—C5—H5C109.5C18—C17—H17120.0
H5A—C5—H5C109.5C17—C18—C19120.28 (16)
H5B—C5—H5C109.5C17—C18—H18119.9
O3—C6—C7115.13 (14)C19—C18—H18119.9
O3—C6—C11125.08 (16)C18—C19—C14119.80 (15)
C7—C6—C11119.79 (14)C18—C19—H19120.1
C8—C7—C6120.32 (14)C14—C19—H19120.1
C8—C7—H7119.8C12—C20—C21122.99 (13)
C6—C7—H7119.8C12—C20—H20118.5
C7—C8—C9120.51 (14)C21—C20—H20118.5
C7—C8—H8119.7O1—C21—C20121.16 (14)
C9—C8—H8119.7O1—C21—C22118.56 (13)
C10—C9—C8118.89 (14)C20—C21—C22120.28 (13)
C10—C9—N4123.46 (13)C23—C22—C27118.28 (15)
C8—C9—N4117.58 (13)C23—C22—C21123.49 (14)
C9—C10—C11120.80 (14)C27—C22—C21118.22 (15)
C9—C10—H10119.6C24—C23—C22120.73 (16)
C11—C10—H10119.6C24—C23—H23119.6
C6—C11—C10119.63 (14)C22—C23—H23119.6
C6—C11—H11120.2C25—C24—C23119.99 (18)
C10—C11—H11120.2C25—C24—H24120.0
N4—C12—C20123.21 (13)C23—C24—H24120.0
N4—C12—C13118.02 (12)C26—C25—C24119.77 (16)
C20—C12—C13118.40 (12)C26—C25—H25120.1
O2—C13—C14122.32 (12)C24—C25—H25120.1
O2—C13—C12117.54 (12)C25—C26—C27120.29 (17)
C14—C13—C12120.13 (11)C25—C26—H26119.9
C19—C14—C15119.33 (14)C27—C26—H26119.9
C19—C14—C13123.03 (13)C26—C27—C22120.94 (17)
C15—C14—C13117.64 (13)C26—C27—H27119.5
C16—C15—C14120.28 (16)C22—C27—H27119.5
C5—O3—C6—C7174.3 (2)C19—C14—C15—C160.3 (2)
C5—O3—C6—C115.7 (3)C13—C14—C15—C16179.77 (14)
O3—C6—C7—C8178.02 (15)C14—C15—C16—C171.1 (3)
C11—C6—C7—C81.9 (2)C15—C16—C17—C181.3 (3)
C6—C7—C8—C90.9 (2)C16—C17—C18—C190.1 (3)
C7—C8—C9—C101.5 (2)C17—C18—C19—C141.4 (2)
C7—C8—C9—N4178.42 (13)C15—C14—C19—C181.5 (2)
C12—N4—C9—C1044.7 (2)C13—C14—C19—C18179.03 (14)
C12—N4—C9—C8138.48 (15)N4—C12—C20—C213.3 (2)
C8—C9—C10—C112.9 (2)C13—C12—C20—C21169.52 (13)
N4—C9—C10—C11179.62 (13)C12—C20—C21—O14.8 (2)
O3—C6—C11—C10179.39 (15)C12—C20—C21—C22175.16 (13)
C7—C6—C11—C100.6 (2)O1—C21—C22—C23168.49 (17)
C9—C10—C11—C61.9 (2)C20—C21—C22—C2311.5 (2)
C9—N4—C12—C20176.00 (14)O1—C21—C22—C2710.9 (2)
C9—N4—C12—C133.1 (2)C20—C21—C22—C27169.14 (15)
N4—C12—C13—O266.90 (17)C27—C22—C23—C240.9 (3)
C20—C12—C13—O2106.31 (15)C21—C22—C23—C24178.44 (17)
N4—C12—C13—C14114.13 (14)C22—C23—C24—C251.1 (3)
C20—C12—C13—C1472.67 (17)C23—C24—C25—C260.4 (3)
O2—C13—C14—C19171.17 (13)C24—C25—C26—C270.6 (3)
C12—C13—C14—C197.8 (2)C25—C26—C27—C220.8 (3)
O2—C13—C14—C159.4 (2)C23—C22—C27—C260.1 (3)
C12—C13—C14—C15171.68 (12)C21—C22—C27—C26179.45 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O10.861.962.6346 (17)135
C7—H7···O1i0.932.513.334 (2)148
C26—H26···O2ii0.932.583.261 (2)130
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank to Universities Sophisticated Instrumental Centre, University of Mysore, Mysuru, for CCD X-ray facilities,

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLin, Y.-I. & Lang, S. A. (1980). J. Org. Chem. 45, 4857–4860.  CrossRef CAS Web of Science Google Scholar
First citationNeumann, J. J., Suri, M. & Glorius, F. (2010). Angew. Chem. Int. Ed. 49, 7790–7794.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWürtz, S., Rakshit, S., Neumann, J. J., Dröge, T. & Glorius, F. (2008). Angew. Chem. 120, 7340–7343.  Google Scholar
First citationYan, R. L., Luo, J., Wang, C. X., Ma, C. W., Huang, G. S. & Liang, Y. M. (2010). J. Org. Chem. 75, 5395–5397.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds