organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,3,5-Tri­chloro-2,4,6-tris­­(di­chloro­meth­yl)benzene

CROSSMARK_Color_square_no_text.svg

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 8 February 2017; accepted 10 February 2017; online 17 February 2017)

The asymmetric unit of the title compound, C9H3Cl9, contains one mol­ecule. Two slightly different conformations with nearly C3h symmetry are mutually disordered in a 1:1 ratio. This disorder enhances the overall structural symmetry to D3h.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) is a central inter­mediate for star-shaped conjugated oligomers (Demenev et al., 2010[Demenev, A., Eichhorn, S. H., Taerum, T., Perepichka, D. F., Patwardhan, S., Grozema, F. C., Siebbeles, L. D. A. & Klenkler, R. (2010). Chem. Mater. 22, 1420-1428.]; Detert et al., 2010[Detert, H., Lehmann, M. & Meier, H. (2010). Materials, 3, 3218-3330.]). A bromo derivative has been reported by Holst et al. (2011[Holst, C., Schollmeyer, D. & Meier, H. (2011). Z. Naturforsch. Teil B, 66, 935-938.]). This compound combines our inter­est in perchloro hydro­carbons (Detert et al., 2009[Detert, H., Lenoir, D. & Zipse, H. (2009). Eur. J. Org. Chem. pp. 1181-1190.]; Schollmeyer & Detert, 2017[Schollmeyer, D. & Detert, H. (2017). Tetrahedron Lett. 58, 843-846.]) and star-shaped discotic liquid crystals (Rieth et al., 2014[Rieth, T., Marszalek, T., Pisula, W. & Detert, H. (2014). Chemistry, 20, 5000-5006.]; Glang et al., 2014[Glang, S., Rieth, T., Borchmann, D., Fortunati, I., Signorini, R. & Detert, H. (2014). Eur. J. Org. Chem. pp. 3116-3126.]).

[Figure 1]
Figure 1
The crystal structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

The asymmetric unit contains one mol­ecule of the title compound and two very similar conformations with nearly C3h symmetry occur in a 1:1 ratio (Fig. 2[link]). This disorder enhances the symmetry of the overall structure to D3h. Assuming the D3h symmetry for one nondis­ordered mol­ecule, the space group will rise from P43 to P43212. However, then the refinement is not stable and the mol­ecular symmetry is in contradiction to the chemistry. Distances between H atoms and ring-bound Cl atoms are 2.262 Å for H7⋯Cl3 and also for H8⋯Cl6, but the spacing between H9 and Cl9 is 2.43 Å. Similarly, two C—H bonds are nearly coplanar with the ring (H8—C8—C3—C4 = −3° and H9—C9—C5—C6 = 3°), whereas H7—C7—C1—C2 is twisted by −9°.

[Figure 2]
Figure 2
Perspective view of the two superposed orientations of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Synthesis and crystallization

The title compound was prepared according to Veciana et al. (1993[Veciana, J., Rovira, C., Ventosa, N., Crespo, M. I. & Palacio, F. (1993). J. Am. Chem. Soc. 115, 57-64.]) and Taerum et al. (2009[Taerum, T., Lukoyanova, O., Wylie, R. G. & Perepichka, D. F. (2009). Org. Lett. 11, 3230-3233.]) with the modification that a steel bomb (2.2 × 25 cm) was used as reaction vessel. This allows scale-up to 3.0 g (16.5 mmol, 1.0 equivalent) 1,3,5-trichlorbenzene in 30 ml absolute chloro­form with 2.7 g (19.8 mmol, 1.2 equivalents) AlCl3, and frequent pressure reduction was not necessary. The temperature was regulated with ISOHEAT (typ: MIL-HT–H, P = 175 W) by a heat panel (JUMBO iTRON 16). The reaction mixture was heated slowly (over 3 h) to 383 K and held at 383 K for 67 h with magnetic stirring. After cooling to room temperature, the pressure was reduced through a swagelok valve (SS-41GS2). Purification was carried out according to Taerum et al. (2009[Taerum, T., Lukoyanova, O., Wylie, R. G. & Perepichka, D. F. (2009). Org. Lett. 11, 3230-3233.]). The title compound was obtained after column chromatography (SiO2, petroleum ether) in 31.6% yield (2.2 g, 5.2 mmol) as colourless crystals (m.p. 453–457 K). Crystallization from aceto­nitrile and chloro­form resulted in single crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The site-occupancy factors [0.501 (6)/0.499 (6)] for the disordered atoms were refined using one common parameter. Disordered phenyl rings were refined assuming a regular six-membered ring with C—C = 1.39 Å. Their displacement parameters were refined using a RIGU restraint.

Table 1
Experimental details

Crystal data
Chemical formula C9H3Cl9
Mr 430.16
Crystal system, space group Tetragonal, P43
Temperature (K) 120
a, c (Å) 9.5435 (2), 15.9424 (4)
V3) 1452.01 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.71
Crystal size (mm) 0.43 × 0.33 × 0.13
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (X-RED; Stoe & Cie, 1999[Stoe & Cie (1999). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.496, 0.813
No. of measured, independent and observed [I > 2σ(I)] reflections 34268, 3561, 3429
Rint 0.018
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.135, 1.11
No. of reflections 3561
No. of parameters 248
No. of restraints 73
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.11, −0.67
Absolute structure Flack x determined using 1575 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.04 (3)
Computer programs: X-AREA (Stoe & Cie, 1999[Stoe & Cie (1999). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), X-RED (Stoe & Cie, 1999[Stoe & Cie (1999). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 1999); cell refinement: X-AREA (Stoe & Cie, 1999); data reduction: X-RED (Stoe & Cie, 1999); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

1,3,5-Trichloro-2,4,6-tris(dichloromethyl)benzene top
Crystal data top
C9H3Cl9Dx = 1.968 Mg m3
Mr = 430.16Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43Cell parameters from 56414 reflections
a = 9.5435 (2) Åθ = 2.5–28.2°
c = 15.9424 (4) ŵ = 1.71 mm1
V = 1452.01 (7) Å3T = 120 K
Z = 4Block, colourless
F(000) = 8400.43 × 0.33 × 0.13 mm
Data collection top
Stoe IPDS 2T
diffractometer
3561 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3429 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.018
rotation method scansθmax = 28.3°, θmin = 2.5°
Absorption correction: integration
(X-RED; Stoe & Cie, 1999)
h = 1212
Tmin = 0.496, Tmax = 0.813k = 1212
34268 measured reflectionsl = 2121
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0519P)2 + 3.8476P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max < 0.001
S = 1.11Δρmax = 1.11 e Å3
3561 reflectionsΔρmin = 0.67 e Å3
248 parametersAbsolute structure: Flack x determined using 1575 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
73 restraintsAbsolute structure parameter: 0.04 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5937 (17)0.1944 (16)0.0704 (8)0.034 (4)0.501 (6)
C20.5029 (16)0.0821 (18)0.0594 (9)0.027 (3)0.501 (6)
C30.5150 (15)0.0029 (15)0.0110 (10)0.024 (3)0.501 (6)
C40.6180 (16)0.0245 (14)0.0704 (8)0.018 (3)0.501 (6)
C50.7089 (14)0.1368 (15)0.0594 (8)0.026 (3)0.501 (6)
C60.6967 (15)0.2218 (13)0.0110 (9)0.030 (4)0.501 (6)
C1A0.6360 (16)0.2079 (15)0.0608 (9)0.030 (3)0.499 (6)
C2A0.5235 (16)0.1174 (18)0.0722 (9)0.023 (3)0.499 (6)
C3A0.4956 (15)0.0141 (15)0.0130 (10)0.024 (3)0.499 (6)
C4A0.5803 (17)0.0014 (14)0.0576 (9)0.026 (3)0.499 (6)
C5A0.6928 (15)0.0919 (17)0.0689 (8)0.031 (4)0.499 (6)
C6A0.7206 (13)0.1952 (15)0.0097 (10)0.029 (3)0.499 (6)
C70.5684 (19)0.2814 (16)0.1497 (10)0.042 (4)0.501 (6)
H70.47790.24670.17360.050*0.501 (6)
C7A0.6720 (15)0.3144 (14)0.1321 (9)0.033 (3)0.499 (6)
H7A0.76280.35850.11530.040*0.499 (6)
Cl10.7014 (2)0.2405 (2)0.22796 (11)0.0453 (4)
Cl20.5463 (3)0.4547 (2)0.13480 (17)0.0650 (7)
Cl30.3692 (5)0.0489 (5)0.1302 (3)0.0491 (13)0.501 (6)
Cl3A0.4128 (3)0.1317 (4)0.15464 (19)0.0310 (9)0.499 (6)
C80.4159 (15)0.1286 (16)0.0251 (12)0.042 (4)0.501 (6)
H80.45000.17370.07790.050*0.501 (6)
C8A0.3712 (15)0.0836 (15)0.0272 (12)0.041 (4)0.499 (6)
H8A0.32610.04950.08000.049*0.499 (6)
Cl40.2420 (2)0.0756 (2)0.0476 (2)0.0665 (8)
Cl50.4243 (2)0.2580 (2)0.0493 (2)0.0662 (8)
Cl60.6317 (4)0.0872 (3)0.15285 (19)0.0312 (9)0.501 (6)
Cl6A0.5491 (5)0.1308 (5)0.1285 (3)0.0486 (13)0.499 (6)
C9A0.8142 (14)0.1718 (15)0.1307 (9)0.034 (3)0.501 (6)
H9A0.85860.26260.11410.041*0.501 (6)
C90.7810 (16)0.0677 (19)0.1479 (10)0.041 (3)0.499 (6)
H90.74690.02270.17220.050*0.499 (6)
Cl70.7406 (2)0.2015 (2)0.22621 (11)0.0454 (4)
Cl80.9548 (2)0.0463 (3)0.13319 (16)0.0649 (7)
Cl90.8193 (6)0.3484 (5)0.0272 (4)0.0571 (14)0.501 (6)
Cl9A0.8484 (5)0.3195 (6)0.0255 (4)0.0561 (14)0.499 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (10)0.032 (7)0.016 (6)0.006 (6)0.003 (6)0.006 (5)
C20.036 (8)0.028 (9)0.017 (6)0.012 (5)0.004 (6)0.000 (5)
C30.027 (7)0.024 (6)0.021 (8)0.004 (5)0.001 (5)0.000 (5)
C40.014 (7)0.025 (6)0.017 (5)0.002 (4)0.001 (4)0.001 (4)
C50.028 (6)0.029 (8)0.022 (7)0.012 (5)0.005 (5)0.001 (5)
C60.043 (8)0.026 (6)0.020 (7)0.004 (6)0.003 (5)0.006 (5)
C1A0.036 (8)0.030 (6)0.024 (7)0.009 (5)0.002 (5)0.002 (5)
C2A0.028 (6)0.018 (7)0.023 (6)0.002 (5)0.000 (5)0.003 (4)
C3A0.019 (5)0.030 (7)0.023 (8)0.000 (5)0.003 (5)0.004 (5)
C4A0.024 (8)0.032 (7)0.022 (7)0.008 (5)0.002 (5)0.002 (6)
C5A0.029 (7)0.047 (10)0.017 (6)0.001 (6)0.005 (5)0.004 (6)
C6A0.028 (6)0.037 (8)0.022 (7)0.002 (6)0.002 (5)0.000 (5)
C70.059 (10)0.035 (7)0.030 (7)0.012 (7)0.007 (6)0.001 (5)
C7A0.037 (7)0.032 (6)0.031 (7)0.022 (5)0.007 (5)0.001 (5)
Cl10.0480 (10)0.0552 (11)0.0328 (9)0.0015 (8)0.0136 (8)0.0089 (7)
Cl20.103 (2)0.0362 (10)0.0560 (14)0.0163 (10)0.0161 (13)0.0138 (9)
Cl30.045 (2)0.064 (3)0.038 (2)0.002 (2)0.0137 (17)0.0075 (19)
Cl3A0.0238 (14)0.0446 (19)0.0247 (14)0.0102 (13)0.0052 (11)0.0027 (13)
C80.032 (7)0.032 (7)0.062 (11)0.002 (5)0.018 (7)0.014 (7)
C8A0.029 (6)0.031 (7)0.062 (11)0.003 (5)0.012 (7)0.020 (7)
Cl40.0398 (10)0.0459 (11)0.114 (2)0.0037 (8)0.0262 (12)0.0030 (12)
Cl50.0459 (11)0.0401 (10)0.113 (2)0.0039 (8)0.0033 (12)0.0263 (12)
Cl60.045 (2)0.0239 (14)0.0249 (14)0.0102 (13)0.0030 (13)0.0046 (11)
Cl6A0.064 (3)0.045 (2)0.037 (2)0.002 (2)0.0071 (19)0.0139 (17)
C9A0.033 (6)0.039 (7)0.030 (7)0.022 (5)0.001 (5)0.007 (5)
C90.036 (7)0.057 (10)0.031 (7)0.008 (7)0.004 (6)0.007 (6)
Cl70.0553 (11)0.0479 (10)0.0328 (9)0.0013 (8)0.0093 (7)0.0136 (8)
Cl80.0360 (10)0.102 (2)0.0565 (14)0.0165 (10)0.0139 (9)0.0162 (13)
Cl90.072 (3)0.047 (2)0.051 (3)0.022 (2)0.020 (3)0.0154 (19)
Cl9A0.047 (2)0.071 (3)0.051 (3)0.021 (2)0.0149 (19)0.020 (3)
Geometric parameters (Å, º) top
C1—C21.3900C5A—C6A1.3900
C1—C61.3900C5A—C91.532 (19)
C1—C71.531 (18)C6A—Cl9A1.719 (9)
C2—C31.3900C7—Cl21.684 (15)
C2—Cl31.732 (9)C7—Cl11.822 (16)
C3—C41.3900C7—H71.0000
C3—C81.544 (17)C7A—Cl11.706 (14)
C4—C51.3900C7A—Cl21.799 (16)
C4—Cl61.697 (9)C7A—H7A1.0000
C5—C61.3900C8—Cl51.714 (16)
C5—C9A1.553 (16)C8—Cl41.772 (15)
C6—Cl91.701 (10)C8—H81.0000
C1A—C2A1.3900C8A—Cl41.718 (15)
C1A—C6A1.3900C8A—Cl51.775 (15)
C1A—C7A1.563 (16)C8A—H8A1.0000
C2A—C3A1.3900C9A—Cl71.701 (14)
C2A—Cl3A1.692 (9)C9A—Cl81.799 (16)
C3A—C4A1.3900C9A—H9A1.0000
C3A—C8A1.527 (17)C9—Cl81.688 (15)
C4A—C5A1.3900C9—Cl71.827 (16)
C4A—Cl6A1.720 (9)C9—H91.0000
C2—C1—C6120.0C1—C7—Cl2115.8 (12)
C2—C1—C7115.1 (12)C1—C7—Cl1109.8 (11)
C6—C1—C7124.9 (12)Cl2—C7—Cl1113.2 (10)
C3—C2—C1120.0C1—C7—H7105.7
C3—C2—Cl3118.7 (9)Cl2—C7—H7105.7
C1—C2—Cl3121.2 (9)Cl1—C7—H7105.7
C2—C3—C4120.0C1A—C7A—Cl1114.8 (10)
C2—C3—C8121.3 (11)C1A—C7A—Cl2110.8 (11)
C4—C3—C8118.7 (11)Cl1—C7A—Cl2113.3 (8)
C5—C4—C3120.0C1A—C7A—H7A105.7
C5—C4—Cl6122.3 (8)Cl1—C7A—H7A105.7
C3—C4—Cl6117.7 (8)Cl2—C7A—H7A105.7
C6—C5—C4120.0C3—C8—Cl5115.5 (13)
C6—C5—C9A121.3 (10)C3—C8—Cl4112.4 (11)
C4—C5—C9A118.5 (10)Cl5—C8—Cl4112.9 (7)
C5—C6—C1120.0C3—C8—H8104.9
C5—C6—Cl9118.7 (9)Cl5—C8—H8104.9
C1—C6—Cl9121.1 (9)Cl4—C8—H8104.9
C2A—C1A—C6A120.0C3A—C8A—Cl4115.3 (13)
C2A—C1A—C7A118.6 (10)C3A—C8A—Cl5112.3 (11)
C6A—C1A—C7A121.1 (10)Cl4—C8A—Cl5112.6 (7)
C3A—C2A—C1A120.0C3A—C8A—H8A105.1
C3A—C2A—Cl3A117.7 (8)Cl4—C8A—H8A105.1
C1A—C2A—Cl3A122.2 (8)Cl5—C8A—H8A105.1
C4A—C3A—C2A120.0C5—C9A—Cl7115.0 (10)
C4A—C3A—C8A121.3 (11)C5—C9A—Cl8110.9 (10)
C2A—C3A—C8A118.7 (11)Cl7—C9A—Cl8113.5 (8)
C3A—C4A—C5A120.0C5—C9A—H9A105.5
C3A—C4A—Cl6A119.7 (9)Cl7—C9A—H9A105.5
C5A—C4A—Cl6A120.3 (9)Cl8—C9A—H9A105.5
C6A—C5A—C4A120.0C5A—C9—Cl8116.3 (11)
C6A—C5A—C9124.0 (12)C5A—C9—Cl7109.9 (11)
C4A—C5A—C9116.0 (12)Cl8—C9—Cl7112.8 (9)
C5A—C6A—C1A120.0C5A—C9—H9105.6
C5A—C6A—Cl9A121.7 (9)Cl8—C9—H9105.6
C1A—C6A—Cl9A118.0 (9)Cl7—C9—H9105.6
C6—C1—C2—C30.0C3A—C4A—C5A—C6A0.0
C7—C1—C2—C3179.1 (14)Cl6A—C4A—C5A—C6A177.6 (12)
C6—C1—C2—Cl3177.6 (14)C3A—C4A—C5A—C9179.1 (14)
C7—C1—C2—Cl31.6 (12)Cl6A—C4A—C5A—C91.5 (12)
C1—C2—C3—C40.0C4A—C5A—C6A—C1A0.0
Cl3—C2—C3—C4177.6 (13)C9—C5A—C6A—C1A179.0 (15)
C1—C2—C3—C8179.9 (15)C4A—C5A—C6A—Cl9A174.0 (12)
Cl3—C2—C3—C82.5 (13)C9—C5A—C6A—Cl9A7.0 (14)
C2—C3—C4—C50.0C2A—C1A—C6A—C5A0.0
C8—C3—C4—C5179.9 (15)C7A—C1A—C6A—C5A174.7 (15)
C2—C3—C4—Cl6177.5 (12)C2A—C1A—C6A—Cl9A174.2 (11)
C8—C3—C4—Cl62.4 (13)C7A—C1A—C6A—Cl9A11.0 (14)
C3—C4—C5—C60.0C2—C1—C7—Cl2125.8 (11)
Cl6—C4—C5—C6177.4 (12)C6—C1—C7—Cl253.3 (18)
C3—C4—C5—C9A174.9 (14)C2—C1—C7—Cl1104.4 (11)
Cl6—C4—C5—C9A7.8 (13)C6—C1—C7—Cl176.5 (14)
C4—C5—C6—C10.0C2A—C1A—C7A—Cl155.8 (14)
C9A—C5—C6—C1174.7 (14)C6A—C1A—C7A—Cl1119.0 (11)
C4—C5—C6—Cl9174.2 (11)C2A—C1A—C7A—Cl274.1 (12)
C9A—C5—C6—Cl911.1 (13)C6A—C1A—C7A—Cl2111.2 (11)
C2—C1—C6—C50.0C2—C3—C8—Cl562.3 (14)
C7—C1—C6—C5179.0 (15)C4—C3—C8—Cl5117.6 (12)
C2—C1—C6—Cl9174.0 (12)C2—C3—C8—Cl469.3 (15)
C7—C1—C6—Cl96.9 (15)C4—C3—C8—Cl4110.8 (11)
C6A—C1A—C2A—C3A0.0C4A—C3A—C8A—Cl462.0 (15)
C7A—C1A—C2A—C3A174.8 (15)C2A—C3A—C8A—Cl4117.9 (11)
C6A—C1A—C2A—Cl3A177.5 (14)C4A—C3A—C8A—Cl568.9 (15)
C7A—C1A—C2A—Cl3A7.7 (13)C2A—C3A—C8A—Cl5111.2 (11)
C1A—C2A—C3A—C4A0.0C6—C5—C9A—Cl7118.7 (10)
Cl3A—C2A—C3A—C4A177.6 (13)C4—C5—C9A—Cl756.1 (14)
C1A—C2A—C3A—C8A179.9 (15)C6—C5—C9A—Cl8110.8 (10)
Cl3A—C2A—C3A—C8A2.3 (13)C4—C5—C9A—Cl874.4 (11)
C2A—C3A—C4A—C5A0.0C6A—C5A—C9—Cl853.2 (17)
C8A—C3A—C4A—C5A179.9 (15)C4A—C5A—C9—Cl8125.8 (11)
C2A—C3A—C4A—Cl6A177.6 (12)C6A—C5A—C9—Cl776.5 (13)
C8A—C3A—C4A—Cl6A2.5 (14)C4A—C5A—C9—Cl7104.5 (11)
 

References

First citationDemenev, A., Eichhorn, S. H., Taerum, T., Perepichka, D. F., Patwardhan, S., Grozema, F. C., Siebbeles, L. D. A. & Klenkler, R. (2010). Chem. Mater. 22, 1420–1428.  CrossRef CAS Google Scholar
First citationDetert, H., Lehmann, M. & Meier, H. (2010). Materials, 3, 3218–3330.  Web of Science CrossRef CAS Google Scholar
First citationDetert, H., Lenoir, D. & Zipse, H. (2009). Eur. J. Org. Chem. pp. 1181–1190.  Web of Science CSD CrossRef Google Scholar
First citationGlang, S., Rieth, T., Borchmann, D., Fortunati, I., Signorini, R. & Detert, H. (2014). Eur. J. Org. Chem. pp. 3116–3126.  Web of Science CrossRef Google Scholar
First citationHolst, C., Schollmeyer, D. & Meier, H. (2011). Z. Naturforsch. Teil B, 66, 935–938.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRieth, T., Marszalek, T., Pisula, W. & Detert, H. (2014). Chemistry, 20, 5000–5006.  CrossRef CAS Google Scholar
First citationSchollmeyer, D. & Detert, H. (2017). Tetrahedron Lett. 58, 843–846.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaerum, T., Lukoyanova, O., Wylie, R. G. & Perepichka, D. F. (2009). Org. Lett. 11, 3230–3233.  CrossRef CAS Google Scholar
First citationVeciana, J., Rovira, C., Ventosa, N., Crespo, M. I. & Palacio, F. (1993). J. Am. Chem. Soc. 115, 57–64.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds