organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Piperazine-1,4-diium bis­­(3-carb­­oxy-2,3-di­hy­droxy­propano­ate)

CROSSMARK_Color_square_no_text.svg

aEquipe de Chimie Moléculaire et Molécules Bioactifs, Département de Chimie, Faculté des Sciences, Université Moulay Ismail, Meknès, Morocco, bCentre National de l'Energie, des Sciences et des Techniques Nucléaires, (CNESTEN), Rabat, Morocco, and cLaboratoire de Chimie des Matériaux et Biotechnologie des Produits Naturels, E.Ma.Me.P.S, Université Moulay Ismail, Faculté des Sciences, Meknès, Morocco
*Correspondence e-mail: kyamni@hotmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 6 February 2017; accepted 13 February 2017; online 17 February 2017)

The asymmetric unit of the title salt, C4H12N22+·2C4H5O6, comprises one half of the piperazine-1,4-diium dication lying on a twofold rotation axis and one 3-carb­oxy-2,3-di­hydroxy­propano­ate anion. In the crystal, the ions are linked into a three-dimensional network by N—H⋯O, C—H⋯O and O—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The asymmetric unit of the title compound comprises one-half of a piperazine-1,4-diium cation, which lies on a twofold rotation axis, and one 3-carb­oxy-2,3-di­hydroxy­propano­ate anion (Fig. 1[link]). The N—C and C—C bond lengths of this cation are comparable with the values observed in related piperazine-1,4-diium adducts or co-crystals piperazine-1, 4-diium bis­(2,4,5-tri­carb­oxy­benzoate) dihydrate (Narayanam et al., 2013[Narayanam, N., Gangu, K. K., Kurra, B. & Mukkamala, S. B. (2013). Acta Cryst. E69, o574-o575.]), piperazine-1,4-diium bis­(3,5-di­carb­oxy­benzoate) (Dong et al., 2010[Dong, G.-Y., Fan, L.-H., Yang, L.-X. & Khan, I. U. (2010). Acta Cryst. E66, o1097.]) and piperazine-1,4-diium 2-(carb­oxy­meth­yl)-2-hy­droxy­butane­dioate monohydrate (Liu et al., 2010[Liu, L.-L. (2010). Acta Cryst. E66, o2191.]). In addition, the C—C, C—O and C=O bond lengths of the di­hydroxy­propano­ate anion are similar to those in the related compounds 2-amino-4-methyl­pyridin-1-ium (2R,3R)-3-carb­oxy-2,3-di­hydroxy­propano­ate monohydrate (Jovita et al., 2014[Jovita, J. V., Sathya, S., Usha, G., Vasanthi, R. & Ramanand, A. (2014). Acta Cryst. E70, o1036-o1037.]), (R)-doxylaminium (R,R)-tartrate (Dayananda et al., 2012[Dayananda, A. S., Dutkiewicz, G., Yathirajan, H. S. & Kubicki, M. (2012). Acta Cryst. E68, o1054-o1055.]) and 2-(1H-imidazol-2-yl)-1H-imidazol-3-ium 3-carb­oxy-2,3-di­hydroxy­propano­ate hemihydrate (Gao et al., 2014[Gao, X.-L., Bian, L.-F. & Guo, S.-W. (2014). Acta Cryst. E70, o1221-o1222.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atomic numbering and 30% probability displacement ellipsoids. In the cation, the atoms labelled with the suffix a are generated by the twofold axis (symmetry operation y, x, 2 − z).

In the crystal, the cations and anions are linked by N—H⋯O, C—H⋯O and O—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]), forming a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.89 2.02 2.8118 (10) 147
N1—H1B⋯O5ii 0.89 1.98 2.8167 (10) 155
O3—H3A⋯O2 0.82 2.17 2.6525 (9) 118
O3—H3A⋯O4iii 0.82 2.14 2.8581 (9) 146
O4—H4⋯O1iii 0.82 1.94 2.7225 (9) 160
O6—H6⋯O2iv 0.82 1.67 2.4810 (9) 172
C2—H2⋯O1v 0.98 2.60 3.3740 (9) 136
C5—H5A⋯O6vi 0.97 2.45 3.1555 (11) 129
C5—H5B⋯O5vii 0.97 2.51 3.2553 (11) 133
C5—H5A⋯O6vi 0.97 2.45 3.1555 (11) 129
Symmetry codes: (i) y+1, x, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{5\over 4}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 4}}]; (iv) x+1, y, z; (v) y, x, -z; (vi) x, y, z+1; (vii) [y+{\script{1\over 2}}, -x+{\script{3\over 2}}, z+{\script{3\over 4}}].
[Figure 2]
Figure 2
A partial packing diagram of the title compound. The O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds are shown as dotted lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Synthesis and crystallization

At room temperature, a solution of tartaric acid in acetone and propionic acid (as co-solvent), was gradually added with stirring to a solution of piperazine in acetone (in an equimolar ratio). After one day, the supernatant layer was separated and the residue was recrystallized by slow evaporation from a mixture of ethanol–water (1:1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 0.5C4H12N22+·C4H5O6
Mr 193.16
Crystal system, space group Tetragonal, P41212
Temperature (K) 293
a, c (Å) 7.5446 (1), 27.6498 (5)
V3) 1573.85 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.15
Crystal size (mm) 0.26 × 0.23 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD detector
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.962, 0.978
No. of measured, independent and observed [I > 2σ(I)] reflections 45806, 7781, 6025
Rint 0.029
(sin θ/λ)max−1) 1.058
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.12
No. of reflections 7781
No. of parameters 120
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.22
Absolute structure Flack x determined using 2104 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.17 (14)
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Piperazine-1,4-diium bis(3-carboxy-2,3-dihydroxypropanoate) top
Crystal data top
0.5C4H12N22+·C4H5O6Dx = 1.630 Mg m3
Mr = 193.16Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 245 reflections
a = 7.5446 (1) Åθ = 1.6–31°
c = 27.6498 (5) ŵ = 0.15 mm1
V = 1573.85 (5) Å3T = 293 K
Z = 8Prism, colourless
F(000) = 8160.26 × 0.23 × 0.15 mm
Data collection top
Bruker APEXII CCD detector
diffractometer
7781 independent reflections
Radiation source: fine-focus sealed tube6025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scansθmax = 48.8°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 1414
Tmin = 0.962, Tmax = 0.978k = 1015
45806 measured reflectionsl = 5458
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0642P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max = 0.001
S = 1.12Δρmax = 0.37 e Å3
7781 reflectionsΔρmin = 0.22 e Å3
120 parametersAbsolute structure: Flack x determined using 2104 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.17 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.46028 (9)0.27973 (9)0.10854 (2)0.01701 (10)
H30.46370.40830.10350.020*
C20.36287 (8)0.19808 (9)0.06515 (2)0.01647 (9)
H20.42160.23970.03570.020*
C40.65177 (9)0.21412 (10)0.10980 (2)0.01791 (10)
O60.74013 (8)0.24921 (10)0.07049 (2)0.02337 (11)
H60.84150.21130.07310.035*
O30.37612 (8)0.01095 (8)0.06619 (3)0.02293 (11)
H3A0.27720.03210.06980.034*
O40.37208 (9)0.24868 (9)0.15256 (2)0.02348 (11)
H40.38430.14450.16030.035*
C10.17119 (9)0.26428 (10)0.06395 (2)0.01868 (10)
O10.14690 (9)0.42374 (9)0.05493 (2)0.02666 (12)
O20.05315 (8)0.14850 (10)0.07153 (3)0.03266 (15)
O50.71328 (10)0.13485 (12)0.14444 (2)0.03238 (16)
N10.84578 (10)0.57964 (12)1.00611 (3)0.02954 (15)
H1A0.92250.50230.99370.035*
H1B0.85090.57141.03820.035*
C50.66484 (13)0.53461 (11)0.98963 (3)0.02630 (15)
H5A0.63460.41561.00010.032*
H5B0.65980.53800.95460.032*
C60.89681 (13)0.76223 (15)0.99109 (3)0.03121 (18)
H6A0.90430.76780.95610.037*
H6B1.01260.79071.00420.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0156 (2)0.0172 (2)0.0182 (2)0.00126 (18)0.00116 (17)0.00002 (18)
C20.0125 (2)0.0185 (2)0.0184 (2)0.00121 (17)0.00160 (17)0.00001 (17)
C40.0157 (2)0.0196 (3)0.0185 (2)0.00035 (18)0.00220 (17)0.00026 (18)
O60.01428 (19)0.0316 (3)0.0242 (2)0.00292 (19)0.00191 (16)0.00567 (19)
O30.0161 (2)0.0178 (2)0.0349 (3)0.00112 (16)0.00423 (19)0.00378 (19)
O40.0273 (3)0.0229 (2)0.02022 (19)0.0026 (2)0.00757 (18)0.00030 (18)
C10.0138 (2)0.0211 (3)0.0212 (2)0.00295 (18)0.00028 (17)0.0001 (2)
O10.0257 (3)0.0220 (3)0.0323 (3)0.0067 (2)0.0034 (2)0.0011 (2)
O20.0125 (2)0.0270 (3)0.0584 (5)0.00103 (19)0.0027 (2)0.0043 (3)
O50.0265 (3)0.0464 (4)0.0243 (3)0.0081 (3)0.0039 (2)0.0110 (3)
N10.0238 (3)0.0354 (4)0.0293 (3)0.0142 (3)0.0004 (2)0.0020 (3)
C50.0335 (4)0.0183 (3)0.0270 (3)0.0018 (3)0.0036 (3)0.0019 (2)
C60.0218 (3)0.0437 (5)0.0281 (3)0.0046 (3)0.0024 (3)0.0014 (3)
Geometric parameters (Å, º) top
C3—O41.4068 (9)C1—O11.2422 (10)
C3—C41.5276 (10)C1—O21.2649 (10)
C3—C21.5359 (9)N1—C51.4786 (13)
C3—H30.9800N1—C61.4894 (15)
C2—O31.4157 (9)N1—H1A0.8900
C2—C11.5304 (9)N1—H1B0.8900
C2—H20.9800C5—C5i1.5032 (18)
C4—O51.2209 (9)C5—H5A0.9700
C4—O61.3022 (9)C5—H5B0.9700
O6—H60.8200C6—C6i1.518 (2)
O3—H3A0.8200C6—H6A0.9700
O4—H40.8200C6—H6B0.9700
O4—C3—C4111.94 (6)O2—C1—C2115.87 (7)
O4—C3—C2112.50 (6)C5—N1—C6111.42 (7)
C4—C3—C2109.90 (5)C5—N1—H1A109.3
O4—C3—H3107.4C6—N1—H1A109.3
C4—C3—H3107.4C5—N1—H1B109.3
C2—C3—H3107.4C6—N1—H1B109.3
O3—C2—C1113.12 (6)H1A—N1—H1B108.0
O3—C2—C3110.51 (6)N1—C5—C5i109.62 (6)
C1—C2—C3109.77 (5)N1—C5—H5A109.7
O3—C2—H2107.7C5i—C5—H5A109.7
C1—C2—H2107.7N1—C5—H5B109.7
C3—C2—H2107.7C5i—C5—H5B109.7
O5—C4—O6124.04 (7)H5A—C5—H5B108.2
O5—C4—C3122.42 (7)N1—C6—C6i110.81 (6)
O6—C4—C3113.53 (6)N1—C6—H6A109.5
C4—O6—H6109.5C6i—C6—H6A109.5
C2—O3—H3A109.5N1—C6—H6B109.5
C3—O4—H4109.5C6i—C6—H6B109.5
O1—C1—O2126.74 (7)H6A—C6—H6B108.1
O1—C1—C2117.37 (7)
Symmetry code: (i) y, x, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3ii0.892.022.8118 (10)147
N1—H1B···O5iii0.891.982.8167 (10)155
O3—H3A···O20.822.172.6525 (9)118
O3—H3A···O4iv0.822.142.8581 (9)146
O4—H4···O1iv0.821.942.7225 (9)160
O6—H6···O2v0.821.672.4810 (9)172
C2—H2···O1vi0.982.603.3740 (9)136
C5—H5A···O6vii0.972.453.1555 (11)129
C5—H5B···O5viii0.972.513.2553 (11)133
C5—H5A···O6vii0.972.453.1555 (11)129
Symmetry codes: (ii) y+1, x, z+1; (iii) x+3/2, y+1/2, z+5/4; (iv) x+1/2, y1/2, z+1/4; (v) x+1, y, z; (vi) y, x, z; (vii) x, y, z+1; (viii) y+1/2, x+3/2, z+3/4.
 

Acknowledgements

F. Asserar thanks the CNRST of Morocco for a doctoral Bursary.

References

First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDayananda, A. S., Dutkiewicz, G., Yathirajan, H. S. & Kubicki, M. (2012). Acta Cryst. E68, o1054–o1055.  CSD CrossRef IUCr Journals Google Scholar
First citationDong, G.-Y., Fan, L.-H., Yang, L.-X. & Khan, I. U. (2010). Acta Cryst. E66, o1097.  CSD CrossRef IUCr Journals Google Scholar
First citationGao, X.-L., Bian, L.-F. & Guo, S.-W. (2014). Acta Cryst. E70, o1221–o1222.  CSD CrossRef IUCr Journals Google Scholar
First citationJovita, J. V., Sathya, S., Usha, G., Vasanthi, R. & Ramanand, A. (2014). Acta Cryst. E70, o1036–o1037.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, L.-L. (2010). Acta Cryst. E66, o2191.  CSD CrossRef IUCr Journals Google Scholar
First citationNarayanam, N., Gangu, K. K., Kurra, B. & Mukkamala, S. B. (2013). Acta Cryst. E69, o574–o575.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds