organic compounds
Piperazine-1,4-diium bis(3-carboxy-2,3-dihydroxypropanoate)
aEquipe de Chimie Moléculaire et Molécules Bioactifs, Département de Chimie, Faculté des Sciences, Université Moulay Ismail, Meknès, Morocco, bCentre National de l'Energie, des Sciences et des Techniques Nucléaires, (CNESTEN), Rabat, Morocco, and cLaboratoire de Chimie des Matériaux et Biotechnologie des Produits Naturels, E.Ma.Me.P.S, Université Moulay Ismail, Faculté des Sciences, Meknès, Morocco
*Correspondence e-mail: kyamni@hotmail.com
The 4H12N22+·2C4H5O6−, comprises one half of the piperazine-1,4-diium dication lying on a twofold rotation axis and one 3-carboxy-2,3-dihydroxypropanoate anion. In the crystal, the ions are linked into a three-dimensional network by N—H⋯O, C—H⋯O and O—H⋯O hydrogen bonds.
of the title salt, CKeywords: crystal structure; organic salt; hydrogen bonds; three-dimensional network.
CCDC reference: 1532469
Structure description
The ). The N—C and C—C bond lengths of this cation are comparable with the values observed in related piperazine-1,4-diium adducts or co-crystals piperazine-1, 4-diium bis(2,4,5-tricarboxybenzoate) dihydrate (Narayanam et al., 2013), piperazine-1,4-diium bis(3,5-dicarboxybenzoate) (Dong et al., 2010) and piperazine-1,4-diium 2-(carboxymethyl)-2-hydroxybutanedioate monohydrate (Liu et al., 2010). In addition, the C—C, C—O and C=O bond lengths of the dihydroxypropanoate anion are similar to those in the related compounds 2-amino-4-methylpyridin-1-ium (2R,3R)-3-carboxy-2,3-dihydroxypropanoate monohydrate (Jovita et al., 2014), (R)-doxylaminium (R,R)-tartrate (Dayananda et al., 2012) and 2-(1H-imidazol-2-yl)-1H-imidazol-3-ium 3-carboxy-2,3-dihydroxypropanoate hemihydrate (Gao et al., 2014).
of the title compound comprises one-half of a piperazine-1,4-diium cation, which lies on a twofold rotation axis, and one 3-carboxy-2,3-dihydroxypropanoate anion (Fig. 1In the crystal, the cations and anions are linked by N—H⋯O, C—H⋯O and O—H⋯O hydrogen bonds (Table 1, Fig. 2), forming a three-dimensional network.
Synthesis and crystallization
At room temperature, a solution of tartaric acid in acetone and propionic acid (as co-solvent), was gradually added with stirring to a solution of piperazine in acetone (in an equimolar ratio). After one day, the supernatant layer was separated and the residue was recrystallized by slow evaporation from a mixture of ethanol–water (1:1).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1532469
https://doi.org/10.1107/S2414314617002498/bt4039sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617002498/bt4039Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617002498/bt4039Isup3.cml
Data collection: APEX2 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).0.5C4H12N22+·C4H5O6− | Dx = 1.630 Mg m−3 |
Mr = 193.16 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P41212 | Cell parameters from 245 reflections |
a = 7.5446 (1) Å | θ = 1.6–31° |
c = 27.6498 (5) Å | µ = 0.15 mm−1 |
V = 1573.85 (5) Å3 | T = 293 K |
Z = 8 | Prism, colourless |
F(000) = 816 | 0.26 × 0.23 × 0.15 mm |
Bruker APEXII CCD detector diffractometer | 7781 independent reflections |
Radiation source: fine-focus sealed tube | 6025 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ω and φ scans | θmax = 48.8°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | h = −14→14 |
Tmin = 0.962, Tmax = 0.978 | k = −10→15 |
45806 measured reflections | l = −54→58 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.041 | w = 1/[σ2(Fo2) + (0.0642P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.117 | (Δ/σ)max = 0.001 |
S = 1.12 | Δρmax = 0.37 e Å−3 |
7781 reflections | Δρmin = −0.22 e Å−3 |
120 parameters | Absolute structure: Flack x determined using 2104 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: −0.17 (14) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C3 | 0.46028 (9) | 0.27973 (9) | 0.10854 (2) | 0.01701 (10) | |
H3 | 0.4637 | 0.4083 | 0.1035 | 0.020* | |
C2 | 0.36287 (8) | 0.19808 (9) | 0.06515 (2) | 0.01647 (9) | |
H2 | 0.4216 | 0.2397 | 0.0357 | 0.020* | |
C4 | 0.65177 (9) | 0.21412 (10) | 0.10980 (2) | 0.01791 (10) | |
O6 | 0.74013 (8) | 0.24921 (10) | 0.07049 (2) | 0.02337 (11) | |
H6 | 0.8415 | 0.2113 | 0.0731 | 0.035* | |
O3 | 0.37612 (8) | 0.01095 (8) | 0.06619 (3) | 0.02293 (11) | |
H3A | 0.2772 | −0.0321 | 0.0698 | 0.034* | |
O4 | 0.37208 (9) | 0.24868 (9) | 0.15256 (2) | 0.02348 (11) | |
H4 | 0.3843 | 0.1445 | 0.1603 | 0.035* | |
C1 | 0.17119 (9) | 0.26428 (10) | 0.06395 (2) | 0.01868 (10) | |
O1 | 0.14690 (9) | 0.42374 (9) | 0.05493 (2) | 0.02666 (12) | |
O2 | 0.05315 (8) | 0.14850 (10) | 0.07153 (3) | 0.03266 (15) | |
O5 | 0.71328 (10) | 0.13485 (12) | 0.14444 (2) | 0.03238 (16) | |
N1 | 0.84578 (10) | 0.57964 (12) | 1.00611 (3) | 0.02954 (15) | |
H1A | 0.9225 | 0.5023 | 0.9937 | 0.035* | |
H1B | 0.8509 | 0.5714 | 1.0382 | 0.035* | |
C5 | 0.66484 (13) | 0.53461 (11) | 0.98963 (3) | 0.02630 (15) | |
H5A | 0.6346 | 0.4156 | 1.0001 | 0.032* | |
H5B | 0.6598 | 0.5380 | 0.9546 | 0.032* | |
C6 | 0.89681 (13) | 0.76223 (15) | 0.99109 (3) | 0.03121 (18) | |
H6A | 0.9043 | 0.7678 | 0.9561 | 0.037* | |
H6B | 1.0126 | 0.7907 | 1.0042 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C3 | 0.0156 (2) | 0.0172 (2) | 0.0182 (2) | 0.00126 (18) | 0.00116 (17) | −0.00002 (18) |
C2 | 0.0125 (2) | 0.0185 (2) | 0.0184 (2) | 0.00121 (17) | 0.00160 (17) | −0.00001 (17) |
C4 | 0.0157 (2) | 0.0196 (3) | 0.0185 (2) | 0.00035 (18) | −0.00220 (17) | 0.00026 (18) |
O6 | 0.01428 (19) | 0.0316 (3) | 0.0242 (2) | 0.00292 (19) | 0.00191 (16) | 0.00567 (19) |
O3 | 0.0161 (2) | 0.0178 (2) | 0.0349 (3) | 0.00112 (16) | 0.00423 (19) | −0.00378 (19) |
O4 | 0.0273 (3) | 0.0229 (2) | 0.02022 (19) | 0.0026 (2) | 0.00757 (18) | −0.00030 (18) |
C1 | 0.0138 (2) | 0.0211 (3) | 0.0212 (2) | 0.00295 (18) | −0.00028 (17) | −0.0001 (2) |
O1 | 0.0257 (3) | 0.0220 (3) | 0.0323 (3) | 0.0067 (2) | −0.0034 (2) | 0.0011 (2) |
O2 | 0.0125 (2) | 0.0270 (3) | 0.0584 (5) | 0.00103 (19) | 0.0027 (2) | 0.0043 (3) |
O5 | 0.0265 (3) | 0.0464 (4) | 0.0243 (3) | 0.0081 (3) | −0.0039 (2) | 0.0110 (3) |
N1 | 0.0238 (3) | 0.0354 (4) | 0.0293 (3) | 0.0142 (3) | −0.0004 (2) | 0.0020 (3) |
C5 | 0.0335 (4) | 0.0183 (3) | 0.0270 (3) | 0.0018 (3) | −0.0036 (3) | 0.0019 (2) |
C6 | 0.0218 (3) | 0.0437 (5) | 0.0281 (3) | −0.0046 (3) | 0.0024 (3) | 0.0014 (3) |
C3—O4 | 1.4068 (9) | C1—O1 | 1.2422 (10) |
C3—C4 | 1.5276 (10) | C1—O2 | 1.2649 (10) |
C3—C2 | 1.5359 (9) | N1—C5 | 1.4786 (13) |
C3—H3 | 0.9800 | N1—C6 | 1.4894 (15) |
C2—O3 | 1.4157 (9) | N1—H1A | 0.8900 |
C2—C1 | 1.5304 (9) | N1—H1B | 0.8900 |
C2—H2 | 0.9800 | C5—C5i | 1.5032 (18) |
C4—O5 | 1.2209 (9) | C5—H5A | 0.9700 |
C4—O6 | 1.3022 (9) | C5—H5B | 0.9700 |
O6—H6 | 0.8200 | C6—C6i | 1.518 (2) |
O3—H3A | 0.8200 | C6—H6A | 0.9700 |
O4—H4 | 0.8200 | C6—H6B | 0.9700 |
O4—C3—C4 | 111.94 (6) | O2—C1—C2 | 115.87 (7) |
O4—C3—C2 | 112.50 (6) | C5—N1—C6 | 111.42 (7) |
C4—C3—C2 | 109.90 (5) | C5—N1—H1A | 109.3 |
O4—C3—H3 | 107.4 | C6—N1—H1A | 109.3 |
C4—C3—H3 | 107.4 | C5—N1—H1B | 109.3 |
C2—C3—H3 | 107.4 | C6—N1—H1B | 109.3 |
O3—C2—C1 | 113.12 (6) | H1A—N1—H1B | 108.0 |
O3—C2—C3 | 110.51 (6) | N1—C5—C5i | 109.62 (6) |
C1—C2—C3 | 109.77 (5) | N1—C5—H5A | 109.7 |
O3—C2—H2 | 107.7 | C5i—C5—H5A | 109.7 |
C1—C2—H2 | 107.7 | N1—C5—H5B | 109.7 |
C3—C2—H2 | 107.7 | C5i—C5—H5B | 109.7 |
O5—C4—O6 | 124.04 (7) | H5A—C5—H5B | 108.2 |
O5—C4—C3 | 122.42 (7) | N1—C6—C6i | 110.81 (6) |
O6—C4—C3 | 113.53 (6) | N1—C6—H6A | 109.5 |
C4—O6—H6 | 109.5 | C6i—C6—H6A | 109.5 |
C2—O3—H3A | 109.5 | N1—C6—H6B | 109.5 |
C3—O4—H4 | 109.5 | C6i—C6—H6B | 109.5 |
O1—C1—O2 | 126.74 (7) | H6A—C6—H6B | 108.1 |
O1—C1—C2 | 117.37 (7) |
Symmetry code: (i) y, x, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3ii | 0.89 | 2.02 | 2.8118 (10) | 147 |
N1—H1B···O5iii | 0.89 | 1.98 | 2.8167 (10) | 155 |
O3—H3A···O2 | 0.82 | 2.17 | 2.6525 (9) | 118 |
O3—H3A···O4iv | 0.82 | 2.14 | 2.8581 (9) | 146 |
O4—H4···O1iv | 0.82 | 1.94 | 2.7225 (9) | 160 |
O6—H6···O2v | 0.82 | 1.67 | 2.4810 (9) | 172 |
C2—H2···O1vi | 0.98 | 2.60 | 3.3740 (9) | 136 |
C5—H5A···O6vii | 0.97 | 2.45 | 3.1555 (11) | 129 |
C5—H5B···O5viii | 0.97 | 2.51 | 3.2553 (11) | 133 |
C5—H5A···O6vii | 0.97 | 2.45 | 3.1555 (11) | 129 |
Symmetry codes: (ii) y+1, x, −z+1; (iii) −x+3/2, y+1/2, −z+5/4; (iv) −x+1/2, y−1/2, −z+1/4; (v) x+1, y, z; (vi) y, x, −z; (vii) x, y, z+1; (viii) y+1/2, −x+3/2, z+3/4. |
Acknowledgements
F. Asserar thanks the CNRST of Morocco for a doctoral Bursary.
References
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dayananda, A. S., Dutkiewicz, G., Yathirajan, H. S. & Kubicki, M. (2012). Acta Cryst. E68, o1054–o1055. CSD CrossRef IUCr Journals Google Scholar
Dong, G.-Y., Fan, L.-H., Yang, L.-X. & Khan, I. U. (2010). Acta Cryst. E66, o1097. CSD CrossRef IUCr Journals Google Scholar
Gao, X.-L., Bian, L.-F. & Guo, S.-W. (2014). Acta Cryst. E70, o1221–o1222. CSD CrossRef IUCr Journals Google Scholar
Jovita, J. V., Sathya, S., Usha, G., Vasanthi, R. & Ramanand, A. (2014). Acta Cryst. E70, o1036–o1037. CSD CrossRef IUCr Journals Google Scholar
Liu, L.-L. (2010). Acta Cryst. E66, o2191. CSD CrossRef IUCr Journals Google Scholar
Narayanam, N., Gangu, K. K., Kurra, B. & Mukkamala, S. B. (2013). Acta Cryst. E69, o574–o575. CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.