organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(1,3-Benzodioxol-5-yl)-3-[4-(di­methyl­amino)­phen­yl]prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, cDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, and dDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in, khalil.i@najah.edu

Edited by O. Blacque, University of Zürich, Switzerland (Received 19 December 2016; accepted 21 December 2016; online 6 January 2017)

In the title compound, C18H17NO3, the olefinic double bond adopts an E conformation. The mol­ecule is nearly planar as indicated by the dihedral angle of 3.11 (6)° between the benzodioxole and benzene rings. The carbonyl group lies in the plane of the olefinic double bond and the benzodioxole ring. The trans conformation of the C=C double bond in the central enone group is confirmed by the C=C—C—C torsion angle of −177.82 (14)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones constitute the central core for the construction of a wide range of bioactive compounds (Ajay Kumar et al., 2010[Ajay Kumar, K., Govindaraju, M. & Vasantha Kumar, G. (2010). Indian J. Heterocycl. Chem. 20, 183-184.]). Chalcones and their derivatives demonstrate a wide range of biological activities, such as anti­oxidant, anti­fungal, anti­bacterial, cardioprotective. In view of the broad spectrum of applications associated with chalcones and as a part of our ongoing work on such mol­ecules (Tejkiran et al., 2016[Tejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. A, 324, 33-39.]; Naveen et al., 2016a[Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016a). IUCrData, 1, x161800.]), we report herein on the synthesis and crystal structure of the title compound.

The mol­ecule (Fig. 1[link]) is nearly planar, with a dihedral angle of 3.11 (6)° between the benzodioxole and benzene rings that are bridged by the olefinic double bond. This value is less than that reported for the dihedral angle between the aromatic rings [19.13 (15)°] in the related chalcone derivative (E)-3-(2,3-di­chloro­phen­yl)-1-(4-fluoro­phen­yl)prop-2-en-1-one (Naveen et al., 2016b[Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Abdoh, M. (2016b). IUCrData, 1, x161974.]). The trans conformation about the C7=C8 double bond in the central enone group is confirmed by the C7=C8—C9—C10 torsion angle of −177.82 (14)°. The carbonyl group at C9 lies in the plane of the olefinic double bond and the benzodioxole ring, as indicated by the O3—C9—C8—C7 and O3—C9—C10—C16 torsion angles of 2.0 (2)° and 3.7 (2)°, respectively. No classical hydrogen bonds are found in the structure.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Synthesis and crystallization

A mixture of 4-(di­methyl­amino)­benzaldehyde (5 mmol), 1-(benzo[d][1,3]dioxol-5-yl)ethanone (5 mmol) and sodium hydroxide (5 mmol) in ethyl alcohol (25 ml) was stirred at room temperature for 3 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was poured into ice-cold water and kept in the refrigerator for 18 h. The solid formed was filtered, and washed with cold hydro­chloric acid (5%). Single crystals suitable for X-ray diffraction studies were obtained from methyl alcohol and a few drops of aceto­nitrile by slow evaporation of the solvents (yield 88%, m.p. 93–94°C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C18H17NO3
Mr 295.33
Crystal system, space group Monoclinic, P21/a
Temperature (K) 293
a, b, c (Å) 11.915 (10), 10.8405 (10), 12.184 (11)
β (°) 101.922 (8)
V3) 1539.8 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.29 × 0.27 × 0.24
 
Data collection
Diffractometer Rigaku Saturn724+ CCD
Absorption correction Multi-scan (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.975, 0.979
No. of measured, independent and observed [I > 2σ(I)] reflections 7186, 3479, 2629
Rint 0.029
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.146, 1.04
No. of reflections 3479
No. of parameters 201
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.15
Computer programs: CrystalClear SM-Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 and SHELXL97 (Sheldrick, 208[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrystalClear SM-Expert (Rigaku, 2011); cell refinement: CrystalClear SM-Expert (Rigaku, 2011); data reduction: CrystalClear SM-Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(E)-1-(1,3-Benzodioxol-5-yl)-3-[4-(dimethylamino)phenyl]prop-2-en-1-one top
Crystal data top
C18H17NO3F(000) = 624
Mr = 295.33Dx = 1.274 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 2629 reflections
a = 11.915 (10) Åθ = 3.3–27.5°
b = 10.8405 (10) ŵ = 0.09 mm1
c = 12.184 (11) ÅT = 293 K
β = 101.922 (8)°Rectangle, brown
V = 1539.8 (19) Å30.29 × 0.27 × 0.24 mm
Z = 4
Data collection top
Rigaku Saturn724+ CCD
diffractometer
3479 independent reflections
Radiation source: fine-focus sealed tube2629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.3°
profile data from ω–scansh = 1315
Absorption correction: multi-scan
(NUMABS; Rigaku, 1999)
k = 1411
Tmin = 0.975, Tmax = 0.979l = 1514
7186 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0758P)2 + 0.1951P]
where P = (Fo2 + 2Fc2)/3
3479 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.15 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.37832 (9)0.20251 (12)0.19163 (9)0.0595 (4)
O40.51384 (9)0.08096 (12)0.22013 (9)0.0590 (4)
O50.70923 (10)0.11039 (14)0.26761 (9)0.0721 (5)
N10.65091 (13)0.44829 (15)0.73998 (12)0.0652 (5)
C10.61229 (13)0.40498 (13)0.64936 (12)0.0479 (4)
C20.68837 (13)0.37874 (15)0.54635 (13)0.0535 (5)
C30.64905 (13)0.33658 (15)0.45519 (12)0.0505 (5)
C40.53234 (12)0.31754 (13)0.45929 (11)0.0436 (4)
C50.45761 (12)0.34319 (14)0.56122 (12)0.0487 (4)
C60.49551 (13)0.38484 (14)0.65357 (12)0.0501 (4)
C70.48650 (13)0.27767 (13)0.36412 (12)0.0464 (4)
C80.54391 (13)0.25066 (14)0.26054 (12)0.0480 (4)
C90.48377 (12)0.21340 (13)0.17243 (12)0.0445 (4)
C100.55141 (12)0.18863 (13)0.05724 (11)0.0428 (4)
C110.66948 (13)0.20478 (17)0.02721 (13)0.0570 (5)
C120.73073 (14)0.1804 (2)0.08137 (14)0.0676 (6)
C130.66965 (13)0.13966 (15)0.15751 (12)0.0528 (5)
C140.61240 (15)0.07070 (16)0.30885 (13)0.0581 (5)
C150.55270 (12)0.12316 (12)0.12871 (11)0.0435 (4)
C160.49093 (11)0.14651 (13)0.02312 (11)0.0427 (4)
C230.57384 (18)0.46946 (17)0.84656 (14)0.0659 (6)
C240.7710 (2)0.4674 (3)0.7342 (2)0.0959 (10)
H20.766700.390400.540500.0640*
H30.701400.320200.388900.0610*
H50.379300.331600.566600.0580*
H60.442800.399900.719900.0600*
H70.407100.269800.376500.0560*
H80.623600.255600.244100.0580*
H110.708800.232600.080900.0680*
H120.809700.191500.100900.0810*
H14A0.603000.121600.371800.0700*
H14B0.622500.014200.334100.0700*
H160.411900.135000.005100.0510*
H23A0.543700.392000.877800.0990*
H23B0.614700.508900.897000.0990*
H23C0.511900.521500.835700.0990*
H24A0.798400.531000.680500.1440*
H24B0.783100.491800.806600.1440*
H24C0.811800.392200.711600.1440*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0409 (6)0.0826 (8)0.0527 (6)0.0020 (5)0.0045 (5)0.0061 (5)
O40.0485 (6)0.0820 (8)0.0468 (6)0.0035 (5)0.0107 (5)0.0075 (5)
O50.0517 (7)0.1137 (11)0.0457 (6)0.0125 (7)0.0020 (5)0.0123 (6)
N10.0612 (9)0.0786 (10)0.0588 (8)0.0033 (7)0.0197 (7)0.0107 (7)
C10.0506 (8)0.0465 (7)0.0479 (8)0.0007 (6)0.0133 (6)0.0004 (6)
C20.0375 (7)0.0663 (9)0.0561 (9)0.0027 (7)0.0086 (6)0.0024 (7)
C30.0411 (7)0.0617 (9)0.0462 (8)0.0008 (7)0.0030 (6)0.0015 (6)
C40.0408 (7)0.0475 (7)0.0417 (7)0.0010 (6)0.0066 (5)0.0026 (5)
C50.0389 (7)0.0569 (8)0.0486 (8)0.0012 (6)0.0049 (6)0.0015 (6)
C60.0459 (8)0.0570 (8)0.0444 (7)0.0005 (6)0.0025 (6)0.0032 (6)
C70.0421 (7)0.0507 (8)0.0459 (7)0.0004 (6)0.0077 (6)0.0023 (6)
C80.0440 (7)0.0542 (8)0.0455 (7)0.0025 (6)0.0086 (6)0.0004 (6)
C90.0428 (7)0.0461 (7)0.0437 (7)0.0006 (6)0.0067 (6)0.0038 (6)
C100.0400 (7)0.0438 (7)0.0437 (7)0.0003 (6)0.0067 (6)0.0047 (5)
C110.0431 (8)0.0799 (11)0.0485 (8)0.0087 (7)0.0106 (6)0.0042 (7)
C120.0395 (8)0.1049 (14)0.0553 (9)0.0146 (8)0.0024 (7)0.0091 (9)
C130.0432 (8)0.0673 (9)0.0442 (8)0.0049 (7)0.0002 (6)0.0005 (7)
C140.0597 (10)0.0676 (10)0.0443 (8)0.0061 (8)0.0045 (7)0.0022 (7)
C150.0439 (7)0.0445 (7)0.0430 (7)0.0008 (6)0.0113 (6)0.0034 (5)
C160.0362 (7)0.0460 (7)0.0454 (7)0.0014 (5)0.0070 (5)0.0046 (6)
C230.0866 (13)0.0609 (10)0.0524 (9)0.0040 (9)0.0192 (9)0.0070 (7)
C240.0721 (14)0.132 (2)0.0898 (15)0.0227 (13)0.0314 (12)0.0242 (14)
Geometric parameters (Å, º) top
O3—C91.235 (2)C12—C131.365 (3)
O4—C141.427 (2)C13—C151.377 (2)
O4—C151.370 (2)C15—C161.367 (2)
O5—C131.364 (2)C2—H20.9300
O5—C141.417 (3)C3—H30.9300
N1—C11.364 (2)C5—H50.9300
N1—C231.446 (3)C6—H60.9300
N1—C241.433 (3)C7—H70.9300
C1—C21.417 (2)C8—H80.9300
C1—C61.399 (3)C11—H110.9300
C2—C31.370 (2)C12—H120.9300
C3—C41.397 (2)C14—H14A0.9700
C4—C51.398 (2)C14—H14B0.9700
C4—C71.446 (2)C16—H160.9300
C5—C61.373 (2)C23—H23A0.9600
C7—C81.338 (2)C23—H23B0.9600
C8—C91.465 (2)C23—H23C0.9600
C9—C101.491 (2)C24—H24A0.9600
C10—C111.390 (2)C24—H24B0.9600
C10—C161.406 (2)C24—H24C0.9600
C11—C121.398 (3)
C14—O4—C15106.17 (12)C3—C2—H2119.00
C13—O5—C14106.13 (12)C2—C3—H3119.00
C1—N1—C23121.59 (15)C4—C3—H3119.00
C1—N1—C24120.68 (16)C4—C5—H5119.00
C23—N1—C24117.63 (16)C6—C5—H5119.00
N1—C1—C2121.66 (15)C1—C6—H6120.00
N1—C1—C6121.55 (14)C5—C6—H6120.00
C2—C1—C6116.78 (13)C4—C7—H7116.00
C1—C2—C3121.45 (14)C8—C7—H7116.00
C2—C3—C4121.67 (14)C7—C8—H8119.00
C3—C4—C5116.68 (13)C9—C8—H8119.00
C3—C4—C7123.62 (13)C10—C11—H11119.00
C5—C4—C7119.66 (13)C12—C11—H11119.00
C4—C5—C6122.45 (14)C11—C12—H12121.00
C1—C6—C5120.96 (14)C13—C12—H12121.00
C4—C7—C8128.14 (15)O4—C14—H14A110.00
C7—C8—C9121.29 (14)O4—C14—H14B110.00
O3—C9—C8121.32 (13)O5—C14—H14A110.00
O3—C9—C10119.46 (13)O5—C14—H14B110.00
C8—C9—C10119.22 (13)H14A—C14—H14B108.00
C9—C10—C11123.09 (13)C10—C16—H16121.00
C9—C10—C16117.30 (13)C15—C16—H16121.00
C11—C10—C16119.61 (13)N1—C23—H23A109.00
C10—C11—C12121.85 (15)N1—C23—H23B110.00
C11—C12—C13117.19 (15)N1—C23—H23C109.00
O5—C13—C12128.23 (15)H23A—C23—H23B109.00
O5—C13—C15110.28 (13)H23A—C23—H23C109.00
C12—C13—C15121.50 (14)H23B—C23—H23C109.00
O4—C14—O5108.10 (12)N1—C24—H24A109.00
O4—C15—C13109.30 (12)N1—C24—H24B109.00
O4—C15—C16128.32 (13)N1—C24—H24C109.00
C13—C15—C16122.38 (13)H24A—C24—H24B110.00
C10—C16—C15117.48 (13)H24A—C24—H24C109.00
C1—C2—H2119.00H24B—C24—H24C110.00
C15—O4—C14—O51.21 (17)C4—C5—C6—C10.7 (2)
C14—O4—C15—C130.31 (16)C4—C7—C8—C9178.89 (14)
C14—O4—C15—C16179.25 (14)C7—C8—C9—O32.0 (2)
C14—O5—C13—C12178.77 (18)C7—C8—C9—C10177.82 (14)
C14—O5—C13—C151.48 (18)O3—C9—C10—C11176.62 (15)
C13—O5—C14—O41.65 (18)O3—C9—C10—C163.7 (2)
C23—N1—C1—C2177.02 (15)C8—C9—C10—C113.2 (2)
C24—N1—C1—C20.8 (3)C8—C9—C10—C16176.56 (13)
C23—N1—C1—C63.3 (2)C9—C10—C11—C12179.77 (16)
C24—N1—C1—C6179.52 (19)C16—C10—C11—C120.1 (3)
N1—C1—C2—C3179.25 (15)C9—C10—C16—C15179.72 (13)
C6—C1—C2—C30.5 (2)C11—C10—C16—C150.0 (2)
N1—C1—C6—C5178.90 (15)C10—C11—C12—C130.0 (3)
C2—C1—C6—C50.8 (2)C11—C12—C13—O5179.69 (17)
C1—C2—C3—C40.1 (3)C11—C12—C13—C150.0 (3)
C2—C3—C4—C50.2 (2)O5—C13—C15—O40.75 (18)
C2—C3—C4—C7177.57 (15)O5—C13—C15—C16179.66 (14)
C3—C4—C5—C60.1 (2)C12—C13—C15—O4179.48 (16)
C7—C4—C5—C6178.02 (14)C12—C13—C15—C160.1 (2)
C3—C4—C7—C81.3 (2)O4—C15—C16—C10179.42 (14)
C5—C4—C7—C8179.10 (15)C13—C15—C16—C100.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O30.932.462.804 (3)102
 

Acknowledgements

The authors are grateful to the National Facility, Department of Studies in Physics, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationAjay Kumar, K., Govindaraju, M. & Vasantha Kumar, G. (2010). Indian J. Heterocycl. Chem. 20, 183–184.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016a). IUCrData, 1, x161800.  Google Scholar
First citationNaveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Abdoh, M. (2016b). IUCrData, 1, x161974.  Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. A, 324, 33–39.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds