organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,3-Bis(4-methyl­benzo­yl)-2,4-bis­­(2,4,5-tri­meth­­oxy­phen­yl)cyclo­butane

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, SBRR Mahajana College, Mysuru 570 006, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, cDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, and dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India
*Correspondence e-mail: naveen@ioe.uni-mysore.ac.in, ajaykumar@ycm.uni-mysore.ac.in

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 19 January 2017; accepted 23 January 2017; online 27 January 2017)

The title compound, C38H40O8, possess an inversion centre at the centroid of the four-membered ring. The dihedral angle between the methyl­benzene and tri­meth­oxy­benzene rings is 46.19 (8)°. In the crystal, mol­ecules are linked via weak C—H⋯π inter­actions, forming centrosymmetric supra­molecular dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recently, a new route to polysubstituted cyclo­butanes via K2S2O8-promoted [2 + 2]-cyclo­addition was reported (Zhu et al., 2016[Zhu, H.-T., Tong, X.-J., Zhou, N.-N., Yang, D. & Fan, M.-J. (2016). Tetrahedron Lett. 57, 5497-5500.]). We carried out a reaction of 2,4,5-tri­meth­oxy­benzaldehyde and 4-methyl aceto­phenone in the presence of in 95% ethyl alcohol under reflux conditions. After completion, the reaction unexpectedly yielded the title compound via the inter­molecular [2 + 2]-cyclo­addition of the expected (E)-1-(p-tol­yl)-3-(2,4,5-tri­meth­oxy­phen­yl)prop-2-en-1-one.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The mol­ecule is located about an inversion centre at the centroid of the four-membered ring. The dihedral angle between the aromatic rings is 46.19 (8)°. The meth­oxy groups at C4 and C6 lie close to the plane of theeir attached benzene ring, as indicated by the torsion angle values of −7.2 (2)° and 174.05 (14)° for C8—O3—C4—C5 and C7—O2—C6—C1 respectively whereas the meth­oxy group at C3 is twisted out of the plane of the benzene ring [C9—O4—C3—C2 = 119.22 (17)°] . In the crystal, the mol­ecules are linked via weak C—H⋯π inter­actions (Table 1[link]), forming centrosymmetric supra­molecular dimers.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7CCg2i 0.96 2.75 3.5764 (19) 145
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Synthesis and crystallization

A mixture of 2,4,5-tri­meth­oxy­benzaldehyde (5 mmol), 4-methyl aceto­phenone (5 mmol) and sodium hydroxide (5 mmol) in 95% ethyl alcohol (25 ml) was refluxed on a water bath conditions for 1 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was poured into ice-cold water and kept in the refrigerator overnight. The solid that formed was filtered, and washed with cold hydro­chloric acid (5%). Recrystallization from methanol solution yielded yellow slabs of the title compound. Yield 78%, m.p. 108–110 °C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C38H40O8
Mr 624.70
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.1155 (4), 9.9316 (5), 11.0656 (6)
α, β, γ (°) 70.471 (1), 81.955 (1), 67.854 (1)
V3) 778.47 (7)
Z 1
Radiation type Cu Kα
μ (mm−1) 0.76
Crystal size (mm) 0.28 × 0.25 × 0.22
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.817, 0.852
No. of measured, independent and observed [I > 2σ(I)] reflections 8126, 2539, 2458
Rint 0.042
(sin θ/λ)max−1) 0.585
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.154, 1.05
No. of reflections 2539
No. of parameters 212
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

1,3-Bis(4-methylbenzoyl)-2,4-bis(2,4,5-trimethoxyphenyl)cyclobutane top
Crystal data top
C38H40O8Z = 1
Mr = 624.70F(000) = 332
Triclinic, P1Dx = 1.332 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 8.1155 (4) ÅCell parameters from 2458 reflections
b = 9.9316 (5) Åθ = 5.9–64.3°
c = 11.0656 (6) ŵ = 0.76 mm1
α = 70.471 (1)°T = 296 K
β = 81.955 (1)°Rectangle, yellow
γ = 67.854 (1)°0.28 × 0.25 × 0.22 mm
V = 778.47 (7) Å3
Data collection top
Bruker X8 Proteum
diffractometer
2539 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2458 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.042
Detector resolution: 18.4 pixels mm-1θmax = 64.3°, θmin = 5.9°
φ and ω scansh = 89
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1111
Tmin = 0.817, Tmax = 0.852l = 1212
8126 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1056P)2 + 0.2971P]
where P = (Fo2 + 2Fc2)/3
2539 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44259 (16)0.19813 (15)0.23209 (11)0.0295 (4)
O20.01550 (14)0.26130 (12)0.51807 (11)0.0198 (3)
O30.11060 (15)0.46294 (13)0.83588 (11)0.0230 (3)
O40.47051 (15)0.31512 (13)0.81383 (11)0.0223 (3)
C10.3046 (2)0.20001 (17)0.58511 (14)0.0162 (4)
C20.4151 (2)0.21892 (17)0.65963 (15)0.0175 (5)
C30.3506 (2)0.30910 (17)0.74005 (15)0.0175 (5)
C40.1670 (2)0.38172 (17)0.75073 (15)0.0179 (5)
C50.0533 (2)0.36687 (17)0.67677 (15)0.0180 (5)
C60.1219 (2)0.27751 (17)0.59445 (14)0.0162 (5)
C70.1718 (2)0.32646 (19)0.53436 (16)0.0220 (5)
C80.0744 (2)0.55118 (19)0.83837 (17)0.0248 (5)
C90.4770 (2)0.4642 (2)0.78940 (19)0.0297 (6)
C100.3761 (2)0.10060 (17)0.49825 (15)0.0164 (5)
C110.5654 (2)0.07947 (17)0.44097 (15)0.0165 (5)
C120.5760 (2)0.14150 (17)0.29597 (15)0.0184 (5)
C130.7536 (2)0.13001 (17)0.23417 (15)0.0186 (5)
C140.9074 (2)0.07966 (18)0.30416 (15)0.0199 (5)
C151.0701 (2)0.06841 (18)0.24225 (16)0.0222 (5)
C161.0864 (2)0.10438 (18)0.10918 (16)0.0215 (5)
C170.9319 (2)0.15728 (18)0.03947 (16)0.0228 (5)
C180.7680 (2)0.17084 (18)0.10031 (16)0.0208 (5)
C191.2655 (2)0.0854 (2)0.04421 (17)0.0269 (5)
H20.537200.168700.655000.0210*
H50.068900.416700.682200.0220*
H7A0.205300.280900.620700.0330*
H7B0.230800.307900.475500.0330*
H7C0.205700.434500.517900.0330*
H8A0.110300.620200.754200.0370*
H8B0.095800.608400.897400.0370*
H8C0.141500.484300.865200.0370*
H9A0.504800.504000.700400.0450*
H9B0.567100.457600.841200.0450*
H9C0.363600.530800.810300.0450*
H100.292000.135800.429100.0200*
H110.627700.120400.481400.0200*
H140.900400.053500.393200.0240*
H151.170700.036100.290400.0270*
H170.939200.183900.049500.0270*
H180.666600.207400.051800.0250*
H19A1.304100.164800.046400.0400*
H19B1.257100.091500.043300.0400*
H19C1.349700.012300.088000.0400*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0193 (6)0.0386 (8)0.0237 (7)0.0057 (5)0.0007 (5)0.0061 (5)
O20.0152 (6)0.0226 (6)0.0242 (6)0.0059 (5)0.0006 (4)0.0114 (5)
O30.0209 (6)0.0233 (6)0.0253 (6)0.0018 (5)0.0009 (5)0.0149 (5)
O40.0221 (6)0.0211 (6)0.0260 (6)0.0057 (5)0.0059 (5)0.0101 (5)
C10.0171 (8)0.0130 (7)0.0174 (8)0.0050 (6)0.0013 (6)0.0044 (6)
C20.0148 (8)0.0156 (8)0.0203 (8)0.0042 (6)0.0006 (6)0.0050 (6)
C30.0183 (8)0.0150 (8)0.0187 (8)0.0058 (6)0.0024 (6)0.0039 (6)
C40.0212 (8)0.0149 (8)0.0166 (8)0.0048 (6)0.0018 (6)0.0063 (6)
C50.0152 (8)0.0154 (8)0.0210 (8)0.0037 (6)0.0022 (6)0.0054 (6)
C60.0168 (8)0.0149 (8)0.0171 (8)0.0070 (6)0.0002 (6)0.0038 (6)
C70.0160 (8)0.0233 (9)0.0282 (9)0.0074 (7)0.0006 (6)0.0091 (7)
C80.0212 (9)0.0236 (9)0.0293 (9)0.0026 (7)0.0020 (7)0.0148 (7)
C90.0263 (9)0.0270 (10)0.0428 (11)0.0105 (8)0.0044 (8)0.0166 (8)
C100.0147 (8)0.0157 (8)0.0186 (8)0.0041 (6)0.0002 (6)0.0065 (6)
C110.0149 (8)0.0158 (8)0.0212 (8)0.0053 (6)0.0013 (6)0.0093 (6)
C120.0202 (9)0.0132 (7)0.0223 (8)0.0048 (6)0.0008 (7)0.0070 (6)
C130.0215 (9)0.0135 (8)0.0218 (8)0.0068 (6)0.0031 (7)0.0073 (6)
C140.0239 (9)0.0175 (8)0.0175 (8)0.0079 (7)0.0015 (6)0.0045 (6)
C150.0208 (8)0.0194 (8)0.0259 (9)0.0071 (7)0.0014 (7)0.0061 (7)
C160.0240 (9)0.0145 (8)0.0264 (9)0.0081 (6)0.0039 (7)0.0072 (6)
C170.0289 (9)0.0204 (8)0.0180 (8)0.0096 (7)0.0039 (7)0.0051 (6)
C180.0223 (9)0.0183 (8)0.0212 (8)0.0062 (7)0.0014 (6)0.0060 (6)
C190.0269 (9)0.0259 (9)0.0271 (9)0.0110 (7)0.0058 (7)0.0076 (7)
Geometric parameters (Å, º) top
O1—C121.216 (2)C16—C191.502 (3)
O2—C61.373 (2)C17—C181.384 (2)
O2—C71.422 (2)C2—H20.9300
O3—C41.363 (2)C5—H50.9300
O3—C81.427 (2)C7—H7A0.9600
O4—C31.384 (2)C7—H7B0.9600
O4—C91.434 (2)C7—H7C0.9600
C1—C21.399 (2)C8—H8A0.9600
C1—C61.397 (2)C8—H8B0.9600
C1—C101.511 (2)C8—H8C0.9600
C2—C31.385 (2)C9—H9A0.9600
C3—C41.397 (2)C9—H9B0.9600
C4—C51.392 (2)C9—H9C0.9600
C5—C61.398 (2)C10—H100.9800
C10—C111.543 (2)C11—H110.9800
C10—C11i1.588 (2)C14—H140.9300
C11—C121.517 (2)C15—H150.9300
C12—C131.487 (2)C17—H170.9300
C13—C141.396 (2)C18—H180.9300
C13—C181.399 (2)C19—H19A0.9600
C14—C151.383 (2)C19—H19B0.9600
C15—C161.394 (2)C19—H19C0.9600
C16—C171.395 (2)
C6—O2—C7117.55 (13)C6—C5—H5120.00
C4—O3—C8117.44 (14)O2—C7—H7A109.00
C3—O4—C9114.77 (13)O2—C7—H7B109.00
C2—C1—C6116.90 (14)O2—C7—H7C109.00
C2—C1—C10122.54 (15)H7A—C7—H7B109.00
C6—C1—C10120.56 (15)H7A—C7—H7C109.00
C1—C2—C3122.91 (16)H7B—C7—H7C109.00
O4—C3—C2118.38 (15)O3—C8—H8A109.00
O4—C3—C4122.34 (14)O3—C8—H8B109.00
C2—C3—C4119.12 (16)O3—C8—H8C109.00
O3—C4—C3116.61 (15)H8A—C8—H8B109.00
O3—C4—C5123.95 (15)H8A—C8—H8C109.00
C3—C4—C5119.45 (15)H8B—C8—H8C110.00
C4—C5—C6120.32 (16)O4—C9—H9A109.00
O2—C6—C1116.25 (14)O4—C9—H9B109.00
O2—C6—C5122.50 (15)O4—C9—H9C109.00
C1—C6—C5121.26 (15)H9A—C9—H9B109.00
C1—C10—C11118.41 (14)H9A—C9—H9C110.00
C1—C10—C11i119.20 (13)H9B—C9—H9C109.00
C11—C10—C11i89.08 (12)C1—C10—H10110.00
C10—C11—C12115.28 (14)C11—C10—H10110.00
C10—C11—C10i90.92 (12)C11i—C10—H10110.00
C10i—C11—C12116.86 (13)C10—C11—H11111.00
O1—C12—C11120.71 (15)C12—C11—H11111.00
O1—C12—C13120.96 (14)C10i—C11—H11111.00
C11—C12—C13118.33 (14)C13—C14—H14120.00
C12—C13—C14122.74 (14)C15—C14—H14120.00
C12—C13—C18118.87 (15)C14—C15—H15119.00
C14—C13—C18118.39 (16)C16—C15—H15119.00
C13—C14—C15120.54 (15)C16—C17—H17119.00
C14—C15—C16121.40 (16)C18—C17—H17119.00
C15—C16—C17117.85 (16)C13—C18—H18120.00
C15—C16—C19120.54 (16)C17—C18—H18120.00
C17—C16—C19121.61 (15)C16—C19—H19A110.00
C16—C17—C18121.23 (16)C16—C19—H19B109.00
C13—C18—C17120.54 (16)C16—C19—H19C109.00
C1—C2—H2119.00H19A—C19—H19B109.00
C3—C2—H2119.00H19A—C19—H19C109.00
C4—C5—H5120.00H19B—C19—H19C109.00
C7—O2—C6—C1174.05 (14)C1—C10—C11—C12116.41 (16)
C7—O2—C6—C56.3 (2)C1—C10—C11—C10i123.10 (14)
C8—O3—C4—C3173.45 (14)C11i—C10—C11—C12120.49 (14)
C8—O3—C4—C57.2 (2)C11i—C10—C11—C10i0.00 (11)
C9—O4—C3—C2119.22 (17)C1—C10—C11i—C10i122.43 (16)
C9—O4—C3—C465.4 (2)C1—C10—C11i—C12i3.3 (2)
C6—C1—C2—C30.2 (2)C11—C10—C11i—C10i0.00 (10)
C10—C1—C2—C3179.61 (15)C11—C10—C11i—C12i119.13 (15)
C2—C1—C6—O2178.24 (14)C10—C11—C12—O12.6 (2)
C2—C1—C6—C51.4 (2)C10—C11—C12—C13177.95 (14)
C10—C1—C6—O22.0 (2)C10i—C11—C12—O1102.45 (19)
C10—C1—C6—C5178.38 (15)C10i—C11—C12—C1377.0 (2)
C2—C1—C10—C1128.5 (2)O1—C12—C13—C14173.58 (17)
C2—C1—C10—C11i77.8 (2)O1—C12—C13—C186.6 (2)
C6—C1—C10—C11151.72 (15)C11—C12—C13—C146.9 (2)
C6—C1—C10—C11i101.93 (18)C11—C12—C13—C18172.89 (15)
C1—C2—C3—O4177.31 (15)C12—C13—C14—C15178.84 (16)
C1—C2—C3—C41.8 (2)C18—C13—C14—C151.0 (3)
O4—C3—C4—O31.6 (2)C12—C13—C18—C17178.03 (16)
O4—C3—C4—C5177.83 (15)C14—C13—C18—C171.8 (3)
C2—C3—C4—O3176.91 (14)C13—C14—C15—C161.0 (3)
C2—C3—C4—C52.5 (2)C14—C15—C16—C172.1 (3)
O3—C4—C5—C6178.04 (15)C14—C15—C16—C19177.55 (17)
C3—C4—C5—C61.3 (2)C15—C16—C17—C181.3 (3)
C4—C5—C6—O2178.93 (14)C19—C16—C17—C18178.38 (17)
C4—C5—C6—C10.7 (2)C16—C17—C18—C130.7 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7C···Cg2ii0.962.753.5764 (19)145
Symmetry code: (ii) x, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-T., Tong, X.-J., Zhou, N.-N., Yang, D. & Fan, M.-J. (2016). Tetrahedron Lett. 57, 5497–5500.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds