organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(3-Chloro­phen­yl)-5-(4-chloro­phen­yl)-3-(5-chloro­thio­phen-2-yl)-4,5-di­hydro-1H-pyrazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, cDepartment of Chemistry, SBRR Mahajana College, Mysuru 570 006, India, and dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India
*Correspondence e-mail: naveen@ioe.uni-mysore.ac.in, ajaykumar@ycm.uni-mysore.ac.in

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 17 December 2016; accepted 24 December 2016; online 13 January 2017)

In the title compound, C19H13Cl3N2S, the central di­hydro­pyrazole ring adopts an envelope conformation with the chiral C atom as the flap. In the crystal, mol­ecules are linked by weak C—H⋯Cl hydrogen bonds into supra­molecular chains propagating along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Five-membered nitro­gen heterocycles such as pyrazoles have been studied extensively for their enormous number of synthetic utilities and pharmaceutical applications. These classes of compounds have known to exhibit varied biological activities such as anti­amoebic (Abid & Azam, 2006[Abid, M. & Azam, A. (2006). Bioorg. Med. Chem. Lett. 16, 2812-2816.]). In view of their potential applications and in a continuation of our work on pyrazolines (Assem et al., 2016[Assem, B., Naveen, S., Nagamallu, R., Ajay Kumar, K., Abdoh, M., Warad, I. & Lokanath, N. K. (2016). Z. Kristallogr. 231, 267-269.]), we report herein on the synthesis and crystal structure of the title compound.

The structure of the mol­ecule is shown in Fig. 1[link]. The central pyrazole ring adopts an envelope conformation with the C3 flap atom having a maximum deviation of 0.138 (4) Å, and puckering parameters Q = 0.220 (3) Å and φ = 78.7 (8)°. The mean plane through the pyrazole ring forms dihedral angles of 5.41 (17), 5.54 (16) and 76.89 (17)° with the chloro­thio­phene, chloro­phenyl (C8–C13) and chloro­phenyl (C14–C19) rings, respectively, whereas the dihedral angle between the chloro­phenyl rings is 81.19 (16)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

The title compound is chiral. In the arbitrarily chosen asymmetric mol­ecule, the compound possess a chiral center at C3 with an R conformation. Since the compound crystallizes in a centrosymmetric space group, we can surmise that the compound is a racemic mixture. In the crystal, the mol­ecules are connected by C3—H3⋯Cl2 inter­actions (Table 1[link]) into the supra­molecular chains propagating along the b axis.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl2i 0.98 2.82 3.700 (4) 150
Symmetry code: (i) x, y+1, z.

Synthesis and crystallization

To a solution of (E)-3-(4-chloro­phen­yl)-1-(5-chloro­thio­phen-2-yl)prop-2-en-1-one, (5 mmol) and (3-chloro­phen­yl)hydrazine hydro­chloride (5 mmol) in methyl alcohol (25 ml), 4–5 drops of conc. hydro­chloric acid were added. The mixture was refluxed on a water bath for 4 h. The progress of the reaction was monitored by TLC. After completion, the mixture was poured into ice-cold water and stirred. The solid that separated was filtered and washed with ice-cold water. The product was crystallized from methyl alcohol to get the title compound in 82% yield, m.p. 375–373 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H13Cl3N2S
Mr 407.73
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.6071 (2), 11.3292 (4), 11.7601 (4)
α, β, γ (°) 64.529 (1), 75.255 (2), 81.149 (2)
V3) 883.73 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 5.83
Crystal size (mm) 0.27 × 0.24 × 0.22
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.302, 0.360
No. of measured, independent and observed [I > 2σ(I)] reflections 9181, 2912, 2661
Rint 0.045
(sin θ/λ)max−1) 0.586
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.152, 1.06
No. of reflections 2912
No. of parameters 226
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.88, −0.37
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

1-(3-Chlorophenyl)-5-(4-chlorophenyl)-3-(5-chlorothiophen-2-yl)-4,5-dihydro-1H-pyrazole top
Crystal data top
C19H13Cl3N2SZ = 2
Mr = 407.73F(000) = 416
Triclinic, P1Dx = 1.532 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.6071 (2) ÅCell parameters from 2661 reflections
b = 11.3292 (4) Åθ = 6.0–64.6°
c = 11.7601 (4) ŵ = 5.83 mm1
α = 64.529 (1)°T = 296 K
β = 75.255 (2)°Rectangle, yellow
γ = 81.149 (2)°0.27 × 0.24 × 0.22 mm
V = 883.73 (5) Å3
Data collection top
Bruker X8 Proteum
diffractometer
2912 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2661 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.045
Detector resolution: 18.4 pixels mm-1θmax = 64.6°, θmin = 6.0°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1313
Tmin = 0.302, Tmax = 0.360l = 1313
9181 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.106P)2 + 0.5652P]
where P = (Fo2 + 2Fc2)/3
2912 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.48103 (10)0.67564 (8)0.97162 (7)0.0279 (3)
Cl20.38383 (13)0.08824 (8)0.66214 (9)0.0374 (3)
Cl30.10331 (10)0.79457 (8)0.07472 (7)0.0318 (3)
S10.31946 (10)0.19980 (7)0.57645 (7)0.0212 (2)
N10.2567 (3)0.4921 (2)0.5288 (2)0.0193 (7)
N20.2453 (3)0.6185 (2)0.5214 (2)0.0203 (8)
C10.3072 (4)0.4138 (3)0.6350 (3)0.0185 (8)
C20.3445 (4)0.4841 (3)0.7088 (3)0.0207 (9)
C30.2528 (4)0.6197 (3)0.6446 (3)0.0181 (8)
C40.3357 (4)0.2748 (3)0.6743 (3)0.0199 (9)
C50.3715 (4)0.0492 (3)0.6913 (3)0.0241 (9)
C60.3988 (4)0.0550 (3)0.7975 (3)0.0242 (9)
C70.3786 (4)0.1844 (3)0.7879 (3)0.0215 (9)
C80.1945 (4)0.7240 (3)0.4180 (3)0.0194 (8)
C90.1718 (4)0.7085 (3)0.3108 (3)0.0203 (9)
C100.1291 (4)0.8178 (3)0.2075 (3)0.0249 (9)
C110.1064 (4)0.9423 (3)0.2034 (3)0.0282 (10)
C120.1267 (4)0.9567 (3)0.3110 (3)0.0278 (10)
C130.1690 (4)0.8507 (3)0.4173 (3)0.0228 (9)
C140.0662 (4)0.6366 (3)0.7233 (3)0.0185 (8)
C150.0936 (4)0.6215 (3)0.6946 (3)0.0210 (9)
C160.2608 (4)0.6325 (3)0.7706 (3)0.0231 (9)
C170.2694 (4)0.6589 (3)0.8767 (3)0.0206 (8)
C180.1130 (4)0.6748 (3)0.9073 (3)0.0231 (9)
C190.0545 (4)0.6625 (3)0.8308 (3)0.0229 (9)
H2A0.474100.489400.698500.0250*
H2B0.289800.442100.799800.0250*
H30.331000.688400.629500.0220*
H60.427300.017500.868400.0290*
H70.393000.206600.852400.0260*
H90.185400.626100.309300.0240*
H110.078601.014000.131600.0340*
H120.111501.039700.311300.0330*
H130.180800.862500.488500.0270*
H150.087400.603800.623400.0250*
H160.366900.622400.751000.0280*
H180.120200.693400.978100.0280*
H190.160400.671600.851400.0270*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0218 (4)0.0380 (5)0.0211 (4)0.0026 (3)0.0010 (3)0.0129 (3)
Cl20.0569 (6)0.0207 (4)0.0377 (5)0.0023 (4)0.0138 (4)0.0127 (4)
Cl30.0274 (4)0.0462 (5)0.0197 (4)0.0043 (3)0.0075 (3)0.0121 (4)
S10.0242 (4)0.0200 (4)0.0193 (4)0.0007 (3)0.0058 (3)0.0074 (3)
N10.0179 (12)0.0210 (13)0.0180 (13)0.0001 (10)0.0027 (10)0.0080 (11)
N20.0262 (14)0.0202 (13)0.0127 (12)0.0006 (10)0.0036 (10)0.0059 (10)
C10.0161 (14)0.0212 (15)0.0160 (15)0.0008 (11)0.0022 (11)0.0064 (12)
C20.0214 (15)0.0215 (15)0.0189 (16)0.0025 (12)0.0060 (12)0.0083 (13)
C30.0199 (15)0.0204 (14)0.0148 (15)0.0017 (12)0.0055 (12)0.0067 (12)
C40.0165 (14)0.0247 (16)0.0185 (15)0.0003 (12)0.0017 (11)0.0102 (13)
C50.0221 (16)0.0210 (15)0.0261 (17)0.0002 (12)0.0029 (13)0.0084 (13)
C60.0228 (16)0.0230 (16)0.0214 (16)0.0002 (13)0.0037 (12)0.0049 (13)
C70.0215 (15)0.0245 (15)0.0181 (15)0.0003 (12)0.0039 (12)0.0089 (13)
C80.0133 (14)0.0238 (15)0.0166 (15)0.0030 (11)0.0002 (11)0.0052 (12)
C90.0142 (14)0.0251 (15)0.0195 (16)0.0001 (12)0.0015 (12)0.0087 (13)
C100.0152 (15)0.0386 (18)0.0151 (15)0.0025 (13)0.0019 (12)0.0059 (13)
C110.0249 (17)0.0293 (17)0.0219 (17)0.0021 (13)0.0052 (13)0.0022 (14)
C120.0255 (17)0.0224 (16)0.0289 (18)0.0014 (13)0.0061 (14)0.0042 (14)
C130.0213 (15)0.0253 (16)0.0211 (16)0.0032 (12)0.0058 (12)0.0075 (13)
C140.0226 (15)0.0162 (14)0.0145 (14)0.0012 (11)0.0040 (12)0.0041 (12)
C150.0237 (16)0.0259 (16)0.0151 (15)0.0017 (12)0.0036 (12)0.0102 (13)
C160.0190 (15)0.0311 (16)0.0217 (16)0.0018 (13)0.0080 (12)0.0109 (13)
C170.0182 (15)0.0202 (14)0.0170 (15)0.0013 (12)0.0007 (12)0.0041 (12)
C180.0278 (17)0.0261 (16)0.0166 (15)0.0005 (13)0.0027 (12)0.0113 (13)
C190.0227 (16)0.0276 (16)0.0196 (16)0.0025 (13)0.0070 (12)0.0090 (13)
Geometric parameters (Å, º) top
Cl1—C171.746 (3)C12—C131.380 (5)
Cl2—C51.717 (4)C14—C151.394 (5)
Cl3—C101.753 (3)C14—C191.395 (5)
S1—C41.734 (4)C15—C161.379 (5)
S1—C51.725 (3)C16—C171.387 (5)
N1—N21.387 (3)C17—C181.385 (5)
N1—C11.296 (4)C18—C191.386 (5)
N2—C31.470 (4)C2—H2A0.9700
N2—C81.380 (4)C2—H2B0.9700
C1—C21.503 (5)C3—H30.9800
C1—C41.435 (5)C6—H60.9300
C2—C31.535 (5)C7—H70.9300
C3—C141.519 (5)C9—H90.9300
C4—C71.372 (5)C11—H110.9300
C5—C61.347 (5)C12—H120.9300
C6—C71.408 (5)C13—H130.9300
C8—C91.400 (5)C15—H150.9300
C8—C131.415 (5)C16—H160.9300
C9—C101.378 (5)C18—H180.9300
C10—C111.376 (5)C19—H190.9300
C11—C121.392 (5)
C4—S1—C590.38 (16)C15—C16—C17119.4 (3)
N2—N1—C1107.8 (2)Cl1—C17—C16119.6 (2)
N1—N2—C3111.9 (2)Cl1—C17—C18119.3 (3)
N1—N2—C8121.2 (2)C16—C17—C18121.1 (3)
C3—N2—C8125.6 (3)C17—C18—C19119.0 (3)
N1—C1—C2113.2 (3)C14—C19—C18120.8 (3)
N1—C1—C4123.5 (3)C1—C2—H2A112.00
C2—C1—C4123.2 (3)C1—C2—H2B112.00
C1—C2—C3101.5 (3)C3—C2—H2A111.00
N2—C3—C2100.6 (3)C3—C2—H2B111.00
N2—C3—C14113.1 (3)H2A—C2—H2B109.00
C2—C3—C14112.4 (3)N2—C3—H3110.00
S1—C4—C1121.9 (2)C2—C3—H3110.00
S1—C4—C7110.9 (3)C14—C3—H3110.00
C1—C4—C7127.2 (3)C5—C6—H6124.00
Cl2—C5—S1119.45 (19)C7—C6—H6124.00
Cl2—C5—C6127.1 (3)C4—C7—H7123.00
S1—C5—C6113.5 (3)C6—C7—H7123.00
C5—C6—C7111.6 (3)C8—C9—H9121.00
C4—C7—C6113.6 (3)C10—C9—H9121.00
N2—C8—C9120.8 (3)C10—C11—H11121.00
N2—C8—C13120.3 (3)C12—C11—H11121.00
C9—C8—C13118.9 (3)C11—C12—H12119.00
C8—C9—C10118.6 (3)C13—C12—H12119.00
Cl3—C10—C9117.3 (3)C8—C13—H13120.00
Cl3—C10—C11119.0 (2)C12—C13—H13120.00
C9—C10—C11123.7 (3)C14—C15—H15120.00
C10—C11—C12117.3 (3)C16—C15—H15120.00
C11—C12—C13121.5 (3)C15—C16—H16120.00
C8—C13—C12120.0 (3)C17—C16—H16120.00
C3—C14—C15122.0 (3)C17—C18—H18121.00
C3—C14—C19119.1 (3)C19—C18—H18121.00
C15—C14—C19118.9 (3)C14—C19—H19120.00
C14—C15—C16120.7 (3)C18—C19—H19120.00
C5—S1—C4—C1179.6 (3)C2—C3—C14—C1978.1 (4)
C5—S1—C4—C70.2 (3)S1—C4—C7—C60.0 (4)
C4—S1—C5—Cl2179.7 (2)C1—C4—C7—C6179.7 (3)
C4—S1—C5—C60.3 (3)Cl2—C5—C6—C7179.6 (3)
C1—N1—N2—C312.7 (3)S1—C5—C6—C70.3 (4)
C1—N1—N2—C8179.9 (3)C5—C6—C7—C40.2 (4)
N2—N1—C1—C22.8 (3)N2—C8—C9—C10177.1 (3)
N2—N1—C1—C4179.2 (3)C13—C8—C9—C101.3 (5)
N1—N2—C3—C221.5 (3)N2—C8—C13—C12176.9 (3)
N1—N2—C3—C1498.6 (3)C9—C8—C13—C121.5 (5)
C8—N2—C3—C2171.7 (3)C8—C9—C10—Cl3179.6 (2)
C8—N2—C3—C1468.2 (4)C8—C9—C10—C110.3 (5)
N1—N2—C8—C96.9 (4)Cl3—C10—C11—C12179.6 (2)
N1—N2—C8—C13174.7 (3)C9—C10—C11—C120.6 (5)
C3—N2—C8—C9172.5 (3)C10—C11—C12—C130.4 (5)
C3—N2—C8—C139.1 (5)C11—C12—C13—C80.6 (5)
N1—C1—C2—C315.8 (3)C3—C14—C15—C16177.5 (3)
C4—C1—C2—C3167.9 (3)C19—C14—C15—C160.3 (5)
N1—C1—C4—S14.5 (5)C3—C14—C19—C18178.1 (3)
N1—C1—C4—C7175.9 (3)C15—C14—C19—C180.8 (5)
C2—C1—C4—S1171.5 (2)C14—C15—C16—C170.0 (5)
C2—C1—C4—C78.1 (5)C15—C16—C17—Cl1178.9 (3)
C1—C2—C3—N220.6 (3)C15—C16—C17—C180.2 (5)
C1—C2—C3—C1499.9 (3)Cl1—C17—C18—C19179.4 (3)
N2—C3—C14—C1514.0 (5)C16—C17—C18—C190.7 (5)
N2—C3—C14—C19168.8 (3)C17—C18—C19—C141.0 (5)
C2—C3—C14—C1599.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl2i0.982.823.700 (4)150
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationAbid, M. & Azam, A. (2006). Bioorg. Med. Chem. Lett. 16, 2812–2816.  Web of Science CrossRef CAS Google Scholar
First citationAssem, B., Naveen, S., Nagamallu, R., Ajay Kumar, K., Abdoh, M., Warad, I. & Lokanath, N. K. (2016). Z. Kristallogr. 231, 267–269.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds