organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Fluoro-1-(prop-2-en-1-yl)-2,3-di­hydro-1H-indole-2,3-dione

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
*Correspondence e-mail: younes.ouzidan@usmba.ac.ma

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 23 December 2016; accepted 6 January 2017; online 13 January 2017)

The asymmetric unit of the title compound, C11H8FNO2, consists of two independent mol­ecules having different conformations and associated through pairwise C—H⋯F hydrogen bonds. These units form `stairstep' stacks along the b-axis direction via ππ stacking inter­actions between di­hydro­indole moieties, with inter­planar spacings of 3.578 (3) and 3.627 (3) Å. The stacks are tied together by weak C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isatin (1H-indole-2,3- dione) derivatives are synthetically versatile substrates, which can be used for the synthesis of a large variety of heterocyclic compounds and as raw material for drug synthesis. Compounds containing an isatin moiety are most widely used as anti-Parkinsonian (Knölker & Reddy, 2002[Knölker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4427.]), anti­fungal (Granik et al., 1978[Granik, V. G., Zhidkova, A. M., Kiselev, S. S., Glushkov, R. G., Polezhaeva, A. J. & Mashkovskii, M. D. (1978). Pharm. Chem. J. 12, 881-886.]) and anti­cancer agents (Marko et al., 2001[Marko, D., Schätzle, S., Friedel, A., Genzlinger, A., Zankl, H., Meijer, L. & Eisenbrand, G. (2001). Br. J. Cancer, 84, 283-289.]). Additionally, isatin derivatives find applications in chemistry of transition metal catalysts for uniform polymerization and in luminescence chemistry (Grandberg et al., 1968[Grandberg, I. I., Krokhina, N. F. & Kondrat'ev, M. N. (1968). Pharm. Chem. J. 2, 372-376.]). It has been shown that isatins exhibit anti­tumor activity due to the formation of stable complexes with DNA (Aravinda et al., 2009[Aravinda, T., Bhojya Naik, H. S. & Prakash Naik, H. R. (2009). Int. J. Pept. Res. Ther. 15, 273-279.]). For the biological activity of isatin derivatives, see: Ramachandran (2011[Ramachandran, S. (2011). Int. J. Res. Pharm. Chem, 1, 289-294.]); Smitha et al. (2008[Smitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621-636.]).

As a continuation of our research devoted to the synthesis of isatin derivatives (Qachchachi et al., 2014[Qachchachi, F.-Z., Ouazzani Chahdi, F., Misbahi, H., Bodensteiner, M. & El Ammari, L. (2014). Acta Cryst. E70, o360.]), we report here the synthesis and structure of 1-allyl-5-fluoro­indoline-2,3-dione. The asymmetric unit consists of two independent mol­ecules forming pseudo-centrosymmetric dimers associated through pairwise C5—H5⋯F2 and C16—H16⋯F1 hydrogen bonds (Table 1[link] and Fig. 1[link]). These units form `stairstep' stacks parallel to the b axis via ππ stacking inter­actions in which the N1,C1,C6–C8 ring associates with the C1–C6 ring of the corresponding mol­ecule at x, 1 + y, z while the C1–C6 ring associates with the N1,C1,C6–C8 ring of the corresponding mol­ecule at x, −1 + y, z (Fig. 2[link]). In both instances, the inter­planar spacing is 3.578 (3) Å and the dihedral angle between the planes is 1.5 (2)°. Concurrently, the other half of the asymmetric unit forms analogous stacking inter­actions with its counterparts generated by the same symmetry operations with the inter­planar spacing being 3.627 (3) Å and the dihedral angle 2.0 (2)°. Fig. 3[link] shows the packing of the complete unit cell. For the structure of 1-octylindoline-2,3-dione, see: Qachchachi et al. (2013[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯F2 0.95 2.64 3.477 (6) 148
C9—H9B⋯O1i 0.99 2.45 3.408 (7) 163
C16—H16⋯F1 0.95 2.50 3.353 (5) 150
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-labeling scheme and 50% probability displacement ellipsoids. The C—H⋯F hydrogen bonds are shown as dotted lines.
[Figure 2]
Figure 2
Detail of the ππ stacking in the crystal packing of the title compound (purple dotted lines). [Symmetry codes: (i) x, 1 + y, z; (ii) x, −1 + y, z.]
[Figure 3]
Figure 3
Crystal packing of the title compound viewed along the b axis. The C—H⋯F and C—H⋯O hydrogen bonds are shown, respectively, by orange and black dotted lines.

Synthesis and crystallization

To a solution of 5-fluoro-2,3-indole­dione (0.5 g, 3.5 mmol) dissolved in DMF (20 ml) was added potassium carbonate (0.61 g, 4.4 mmol), a catalytic qu­antity of tetra-n-butyl­ammonium (0.1 g, 0.4 mmol) and 3-bromo-1-propene (0.2 ml, 3.6 mmol). The mixture was stirred for 48 h; the reaction was monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol solution to afford the title compound as red crystals in 86% yield (m.p.: 450 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H8FNO2
Mr 205.18
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 150
a, b, c (Å) 31.531 (3), 4.2752 (4), 14.1080 (13)
V3) 1901.8 (3)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.96
Crystal size (mm) 0.27 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.76, 0.94
No. of measured, independent and observed [I > 2σ(I)] reflections 13399, 3201, 2813
Rint 0.047
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.189, 1.10
No. of reflections 3201
No. of parameters 272
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.86, −0.32
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.5 (4)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

5-Fluoro-1-(prop-2-en-1-yl)-2,3-dihydro-1H-indole-2,3-dione top
Crystal data top
C11H8FNO2Dx = 1.433 Mg m3
Mr = 205.18Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pna21Cell parameters from 9630 reflections
a = 31.531 (3) Åθ = 3.4–72.5°
b = 4.2752 (4) ŵ = 0.96 mm1
c = 14.1080 (13) ÅT = 150 K
V = 1901.8 (3) Å3Column, orange
Z = 80.27 × 0.07 × 0.06 mm
F(000) = 848
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3201 independent reflections
Radiation source: INCOATEC IµS micro-focus source2813 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.047
Detector resolution: 10.4167 pixels mm-1θmax = 72.6°, θmin = 2.8°
ω scansh = 3538
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 55
Tmin = 0.76, Tmax = 0.94l = 1714
13399 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.1367P)2 + 0.156P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3201 reflectionsΔρmax = 0.86 e Å3
272 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.5 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The model was refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.36220 (9)0.5663 (7)0.6091 (3)0.0471 (8)
O10.28379 (13)1.1914 (11)0.3187 (3)0.0519 (10)
O20.21272 (12)1.5827 (9)0.3844 (3)0.0466 (9)
N10.23084 (11)1.3640 (9)0.5286 (3)0.0296 (8)
C10.26289 (13)1.1603 (10)0.5611 (3)0.0268 (9)
C20.27104 (14)1.0662 (10)0.6529 (3)0.0308 (9)
H20.25401.13630.70410.037*
C30.30516 (14)0.8649 (10)0.6680 (3)0.0344 (10)
H30.31190.79750.73040.041*
C40.32926 (12)0.7631 (10)0.5915 (4)0.0320 (9)
C50.32217 (13)0.8575 (10)0.4997 (3)0.0323 (9)
H50.33960.78890.44890.039*
C60.28839 (13)1.0576 (10)0.4855 (3)0.0291 (9)
C70.27201 (14)1.2069 (11)0.4003 (3)0.0320 (9)
C80.23410 (14)1.4111 (11)0.4335 (4)0.0348 (10)
C90.19819 (13)1.5140 (9)0.5867 (4)0.0323 (9)
H9A0.19051.71720.55780.039*
H9B0.20991.55610.65050.039*
C100.15888 (13)1.3173 (10)0.5963 (4)0.0371 (10)
H100.14561.24640.53980.044*
C110.14177 (16)1.2374 (14)0.6771 (5)0.0514 (14)
H11A0.15421.30420.73490.062*
H11B0.11691.11230.67790.062*
F20.38964 (10)0.3522 (8)0.3790 (3)0.0540 (9)
O30.46219 (11)0.2464 (9)0.6830 (3)0.0463 (9)
O40.53563 (12)0.6362 (10)0.6272 (3)0.0541 (10)
N20.52058 (11)0.4257 (8)0.4808 (3)0.0313 (8)
C120.48881 (13)0.2282 (9)0.4430 (3)0.0255 (8)
C130.48270 (14)0.1402 (10)0.3493 (3)0.0321 (9)
H130.50100.21140.30030.039*
C140.44864 (15)0.0568 (10)0.3302 (4)0.0373 (10)
H140.44330.11980.26670.045*
C150.42247 (13)0.1622 (10)0.4021 (4)0.0353 (10)
C160.42799 (13)0.0785 (10)0.4950 (4)0.0343 (10)
H160.40960.15160.54350.041*
C170.46198 (13)0.1195 (10)0.5149 (3)0.0320 (9)
C180.47587 (13)0.2635 (10)0.6037 (4)0.0325 (10)
C190.51490 (15)0.4685 (11)0.5751 (3)0.0361 (10)
C200.55462 (13)0.5753 (10)0.4267 (4)0.0351 (10)
H20A0.54360.63690.36370.042*
H20B0.56360.76800.46000.042*
C210.59237 (14)0.3680 (10)0.4134 (4)0.0377 (11)
H210.60480.27830.46830.045*
C220.60947 (17)0.3015 (16)0.3314 (5)0.0569 (16)
H22A0.59790.38700.27490.068*
H22B0.63350.16770.32830.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0423 (15)0.0477 (15)0.0515 (19)0.0148 (12)0.0090 (14)0.0057 (13)
O10.055 (2)0.079 (3)0.022 (2)0.018 (2)0.0040 (16)0.0009 (17)
O20.050 (2)0.056 (2)0.033 (2)0.0138 (17)0.0089 (17)0.0035 (16)
N10.0287 (16)0.0353 (18)0.025 (2)0.0031 (14)0.0008 (14)0.0018 (14)
C10.0263 (19)0.0320 (19)0.022 (2)0.0063 (15)0.0031 (16)0.0022 (16)
C20.031 (2)0.0341 (19)0.027 (2)0.0034 (16)0.0029 (17)0.0009 (17)
C30.037 (2)0.036 (2)0.030 (3)0.0063 (17)0.0061 (19)0.0079 (18)
C40.0248 (19)0.038 (2)0.033 (3)0.0034 (16)0.0020 (18)0.0000 (18)
C50.031 (2)0.0353 (19)0.031 (2)0.0015 (16)0.0010 (18)0.0005 (17)
C60.0294 (19)0.0333 (19)0.024 (2)0.0012 (16)0.0004 (17)0.0032 (16)
C70.035 (2)0.040 (2)0.021 (2)0.0041 (17)0.0011 (19)0.0005 (18)
C80.035 (2)0.042 (2)0.028 (2)0.0022 (18)0.0030 (18)0.0015 (18)
C90.0276 (19)0.0323 (19)0.037 (3)0.0016 (16)0.0012 (18)0.0080 (18)
C100.0266 (19)0.037 (2)0.047 (3)0.0012 (16)0.004 (2)0.007 (2)
C110.035 (3)0.062 (3)0.057 (4)0.006 (2)0.015 (3)0.000 (3)
F20.0416 (15)0.0552 (17)0.065 (2)0.0140 (13)0.0024 (16)0.0120 (16)
O30.043 (2)0.071 (2)0.0246 (19)0.0072 (17)0.0022 (15)0.0020 (16)
O40.047 (2)0.065 (2)0.050 (3)0.0056 (18)0.0079 (18)0.020 (2)
N20.0299 (17)0.0325 (17)0.031 (2)0.0008 (14)0.0008 (15)0.0043 (15)
C120.0266 (19)0.0279 (18)0.022 (2)0.0018 (15)0.0007 (16)0.0006 (14)
C130.033 (2)0.0325 (19)0.031 (2)0.0047 (16)0.0009 (18)0.0009 (18)
C140.038 (2)0.039 (2)0.035 (2)0.0023 (18)0.001 (2)0.0113 (19)
C150.026 (2)0.038 (2)0.042 (3)0.0021 (16)0.0081 (19)0.005 (2)
C160.0306 (19)0.0346 (19)0.038 (3)0.0020 (17)0.0015 (19)0.0027 (17)
C170.031 (2)0.0333 (19)0.031 (2)0.0041 (16)0.0012 (18)0.0031 (17)
C180.029 (2)0.044 (2)0.025 (2)0.0069 (16)0.0004 (19)0.0019 (18)
C190.037 (2)0.043 (2)0.029 (2)0.0033 (18)0.0045 (17)0.0037 (19)
C200.031 (2)0.0313 (19)0.043 (3)0.0017 (16)0.0002 (19)0.0058 (18)
C210.027 (2)0.033 (2)0.053 (3)0.0015 (17)0.003 (2)0.003 (2)
C220.039 (3)0.068 (4)0.063 (4)0.009 (2)0.009 (3)0.005 (3)
Geometric parameters (Å, º) top
F1—C41.360 (5)F2—C151.355 (5)
O1—C71.212 (6)O3—C181.202 (6)
O2—C81.213 (6)O4—C191.217 (6)
N1—C81.362 (6)N2—C191.356 (6)
N1—C11.411 (5)N2—C121.414 (5)
N1—C91.463 (5)N2—C201.464 (6)
C1—C21.380 (6)C12—C131.388 (7)
C1—C61.406 (6)C12—C171.400 (6)
C2—C31.394 (6)C13—C141.391 (6)
C2—H20.9500C13—H130.9500
C3—C41.389 (7)C14—C151.383 (7)
C3—H30.9500C14—H140.9500
C4—C51.375 (7)C15—C161.370 (7)
C5—C61.381 (6)C16—C171.394 (6)
C5—H50.9500C16—H160.9500
C6—C71.456 (6)C17—C181.463 (7)
C7—C81.552 (6)C18—C191.564 (6)
C9—C101.504 (6)C20—C211.496 (6)
C9—H9A0.9900C20—H20A0.9900
C9—H9B0.9900C20—H20B0.9900
C10—C111.306 (8)C21—C221.307 (8)
C10—H100.9500C21—H210.9500
C11—H11A0.9500C22—H22A0.9500
C11—H11B0.9500C22—H22B0.9500
C8—N1—C1110.9 (4)C19—N2—C12110.9 (4)
C8—N1—C9122.7 (4)C19—N2—C20123.4 (4)
C1—N1—C9126.4 (4)C12—N2—C20125.7 (4)
C2—C1—C6120.9 (4)C13—C12—C17121.1 (4)
C2—C1—N1128.2 (4)C13—C12—N2128.2 (4)
C6—C1—N1110.9 (4)C17—C12—N2110.7 (4)
C1—C2—C3117.9 (4)C12—C13—C14117.1 (4)
C1—C2—H2121.1C12—C13—H13121.4
C3—C2—H2121.1C14—C13—H13121.4
C4—C3—C2119.8 (4)C15—C14—C13121.0 (5)
C4—C3—H3120.1C15—C14—H14119.5
C2—C3—H3120.1C13—C14—H14119.5
F1—C4—C5118.5 (4)F2—C15—C16118.9 (4)
F1—C4—C3118.0 (4)F2—C15—C14118.3 (5)
C5—C4—C3123.4 (4)C16—C15—C14122.7 (4)
C4—C5—C6116.4 (4)C15—C16—C17116.7 (4)
C4—C5—H5121.8C15—C16—H16121.7
C6—C5—H5121.8C17—C16—H16121.7
C5—C6—C1121.6 (4)C16—C17—C12121.4 (4)
C5—C6—C7131.7 (4)C16—C17—C18131.1 (4)
C1—C6—C7106.7 (4)C12—C17—C18107.4 (4)
O1—C7—C6130.7 (4)O3—C18—C17131.6 (4)
O1—C7—C8123.6 (4)O3—C18—C19123.8 (4)
C6—C7—C8105.7 (4)C17—C18—C19104.5 (4)
O2—C8—N1127.6 (5)O4—C19—N2126.9 (5)
O2—C8—C7126.6 (5)O4—C19—C18126.7 (5)
N1—C8—C7105.8 (4)N2—C19—C18106.3 (4)
N1—C9—C10112.7 (3)N2—C20—C21113.0 (3)
N1—C9—H9A109.1N2—C20—H20A109.0
C10—C9—H9A109.1C21—C20—H20A109.0
N1—C9—H9B109.1N2—C20—H20B109.0
C10—C9—H9B109.1C21—C20—H20B109.0
H9A—C9—H9B107.8H20A—C20—H20B107.8
C11—C10—C9124.5 (5)C22—C21—C20124.6 (5)
C11—C10—H10117.8C22—C21—H21117.7
C9—C10—H10117.8C20—C21—H21117.7
C10—C11—H11A120.0C21—C22—H22A120.0
C10—C11—H11B120.0C21—C22—H22B120.0
H11A—C11—H11B120.0H22A—C22—H22B120.0
C8—N1—C1—C2177.3 (4)C19—N2—C12—C13177.0 (4)
C9—N1—C1—C21.9 (7)C20—N2—C12—C131.2 (7)
C8—N1—C1—C61.5 (5)C19—N2—C12—C173.3 (5)
C9—N1—C1—C6179.3 (4)C20—N2—C12—C17178.5 (4)
C6—C1—C2—C30.4 (6)C17—C12—C13—C140.7 (6)
N1—C1—C2—C3179.1 (4)N2—C12—C13—C14179.6 (4)
C1—C2—C3—C40.8 (6)C12—C13—C14—C150.8 (6)
C2—C3—C4—F1179.8 (4)C13—C14—C15—F2179.6 (4)
C2—C3—C4—C51.9 (7)C13—C14—C15—C160.7 (7)
F1—C4—C5—C6179.9 (4)F2—C15—C16—C17179.4 (4)
C3—C4—C5—C61.7 (6)C14—C15—C16—C170.5 (6)
C4—C5—C6—C10.4 (6)C15—C16—C17—C120.5 (6)
C4—C5—C6—C7178.9 (4)C15—C16—C17—C18177.0 (4)
C2—C1—C6—C50.6 (6)C13—C12—C17—C160.6 (6)
N1—C1—C6—C5179.5 (4)N2—C12—C17—C16179.7 (4)
C2—C1—C6—C7178.2 (4)C13—C12—C17—C18177.9 (4)
N1—C1—C6—C70.7 (5)N2—C12—C17—C182.4 (5)
C5—C6—C7—O10.8 (9)C16—C17—C18—O31.3 (8)
C1—C6—C7—O1179.4 (5)C12—C17—C18—O3178.2 (5)
C5—C6—C7—C8178.4 (4)C16—C17—C18—C19177.7 (4)
C1—C6—C7—C80.3 (5)C12—C17—C18—C190.8 (4)
C1—N1—C8—O2176.7 (5)C12—N2—C19—O4176.5 (5)
C9—N1—C8—O22.5 (8)C20—N2—C19—O41.8 (7)
C1—N1—C8—C71.6 (5)C12—N2—C19—C182.6 (5)
C9—N1—C8—C7179.2 (4)C20—N2—C19—C18179.1 (4)
O1—C7—C8—O22.1 (8)O3—C18—C19—O41.1 (8)
C6—C7—C8—O2177.1 (5)C17—C18—C19—O4178.0 (5)
O1—C7—C8—N1179.6 (5)O3—C18—C19—N2179.8 (4)
C6—C7—C8—N11.1 (5)C17—C18—C19—N21.1 (5)
C8—N1—C9—C1091.9 (5)C19—N2—C20—C2197.0 (5)
C1—N1—C9—C1089.0 (5)C12—N2—C20—C2185.0 (5)
N1—C9—C10—C11125.9 (5)N2—C20—C21—C22126.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···F20.952.643.477 (6)148
C9—H9B···O1i0.992.453.408 (7)163
C16—H16···F10.952.503.353 (5)150
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The support of NSF-MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAravinda, T., Bhojya Naik, H. S. & Prakash Naik, H. R. (2009). Int. J. Pept. Res. Ther. 15, 273–279.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrandberg, I. I., Krokhina, N. F. & Kondrat'ev, M. N. (1968). Pharm. Chem. J. 2, 372–376.  CrossRef Google Scholar
First citationGranik, V. G., Zhidkova, A. M., Kiselev, S. S., Glushkov, R. G., Polezhaeva, A. J. & Mashkovskii, M. D. (1978). Pharm. Chem. J. 12, 881–886.  CrossRef Google Scholar
First citationKnölker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4427.  Web of Science PubMed Google Scholar
First citationMarko, D., Schätzle, S., Friedel, A., Genzlinger, A., Zankl, H., Meijer, L. & Eisenbrand, G. (2001). Br. J. Cancer, 84, 283–289.  Web of Science CrossRef CAS Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.  CSD CrossRef IUCr Journals Google Scholar
First citationQachchachi, F.-Z., Ouazzani Chahdi, F., Misbahi, H., Bodensteiner, M. & El Ammari, L. (2014). Acta Cryst. E70, o360.  CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, S. (2011). Int. J. Res. Pharm. Chem, 1, 289–294.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621–636.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds