organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 6-(4-chloro­phen­yl)-2,2-di­methyl-4-oxo-3,4-di­hydro-2H-pyran-5-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aPostgraduate and Research Department of Physics, National College (Autonomous), Tiruchirappalli 620 001, Tamilnadu, India, bSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, and cLaboratorio de Políimeros, Centro de Química Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Complejo de Ciencias, ICUAP, Edif. 103H, 22 Sur y San Claudio, CP 72570 Puebla, Puebla, Mexico
*Correspondence e-mail: sunvag@gmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 23 December 2016; accepted 9 January 2017; online 13 January 2017)

The title compound, C16H17ClO4, is a derivative of 3,4-di­hydro-2H-pyran-4-one in which the root moiety forms a dihedral angle of 49.36 (5)° with the pendent chloro­benzene ring. The crystal structure features weak methyl-C—H⋯O(ring carbon­yl) contacts, leading to an R22(12) ring motif, and benzene-C—H⋯O(ester) interactions, leading to a supra­molecular chain along the b axis, to form a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

4H-Pyran-4-ones and their various derivatives are known for their significant biological and pharmacological activities, and are structurally similar to biologically active 1,4-di­hydro­pyridines (1,4-DHPs) (Zonouz et al., 2014[Zonouz, A. M., Moghani, D. & Okhravi, S. (2014). Curr. Chem. Lett. 3, 71-74.]). They act as calcium antagonists (Súarez et al., 2002[Suárez, M., Salfrán, E., Verdecia, Y., Ochoa, E., Alba, L., Martín, N., Martínez, R., Quinteiro, M., Seoane, C., Novoa, H., Blaton, N., Peeters, O. M. & De Ranter, C. (2002). Tetrahedron, 58, 953-960.]) and serve as potent apoptosis inducers (Zhang et al., 2005[Zhang, H.-Z., Kasibhatla, S., Kuemmerle, J., Kemnitzer, W., Ollis-Mason, K., Qiu, L., Crogan-Grundy, C., Tseng, B., Drewe, J. & Cai, S. X. (2005). J. Med. Chem. 48, 5215-5223.]). As a continuation of structural investigations of a series of 4H-pyran-4-one derivatives, we report herein on the crystal structure determination and the geometry optimization of the title compound, (I).

A perspective view of (I) with the atomic numbering scheme is illustrated in Fig. 1[link]. The 3,4-di­hydro-2H-pyran-4-one moiety (C7–C11/O1/O2) forms a dihedral angle of 49.36 (5)° with the benzene ring. The bond distances and angles are essentially equivalent compared to those in the previously reported structure ethyl 2,2-dimethyl-4-oxo-6-phenyl-3,4-di­hydro-2H-pyran-5-carboxyl­ate (II) (Sharmila et al., 2016[Sharmila, N., Sundar, T. V., Sakthivel, P. & Venkatesan, P. (2016). IUCrData, 1, x161924.]). However, the benzene group has rotated about the C6—C7 bond as evident from the change in torsion angles namely, C1—C6—C7—C11 and C5—C6—C7—C11 of −133.37 (15) and 50.56 (19)°, respectively, cf. 138.6 (2) and −43.3 (3)° in (II). Also, a fragment overlay (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]) analysis of (I) with (II) gives an r.m.s. deviation of 2.91 Å (Fig. 2[link]). These observations indicate that the structural changes could be attributed to the substitution of the heavier Cl atom at C3 and the involvement of C2 in making a hydrogen bond with O4 via H2 (Table 1[link]). Another superposition analysis of (I) but, with 4-(4-fluoro­phen­yl)-6-methyl­amino-5-nitro-2-phenyl-4H-pyran-3- carbo­nitrile (III) (Vishnupriya et al., 2013[Vishnupriya, R., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2013). Acta Cryst. E69, o687-o688.]) gives an r.m.s. deviation of 1.57 Å, which confirms the effect of relatively heavier Cl substitution at C3 resulting in the small conformational changes in the mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4i 0.93 2.66 3.3694 (18) 134
C15—H15B⋯O2ii 0.96 2.66 3.553 (2) 156
C13—H13BCgiii 0.97 2.96 3.6463 (17) 129
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) x, y+1, z.
[Figure 1]
Figure 1
The mol­ecular structure of (I), with displacement ellipsoids for the non-H atoms drawn at the 30% probability level.
[Figure 2]
Figure 2
A superimposed fit of (I) (green) and related structure (II) (black).

The pyran ring of (I) is puckered (puckering parameters: Q = 0.4539 (16) Å, q2 = 0.378 (15) Å, q3 = −0.2512 (15) Å, θ = 123.61 (19)° and φ = 91.6 (2)°, with atom C8 showing the maximum deviation of 0.2946 (16) Å from the plane defined by O1/C7/C11–C8.

Theoretical calculations of the mol­ecular structure were performed using MOPAC2016′s PM7 geometry optimization algorithm (Stewart, 2016[Stewart, J. J. P. (2016). MOPAC2016. web: https://OpenMOPAC.net.]). This shows satisfactory agreement with the results of the X-ray crystal structure analysis. The HOMO and LUMO energy levels were found to be −9.829 and −1.127 eV, respectively. The total energy and dipole moment values of (I) are −3643.34886 eV and 5.235 Debye, respectively. In the geometry optimized structure of (I), a decrease in bond distances seems to be observed for the bonds O1—C8 (1.46 Å) and C6—C7 (1.47 Å) when compared to those in the crystal, i.e. 1.4732 (16) and 1.4832 (16) Å. The O1—C7—C6 bond angle decreased from 110.78 (11) to 110.2°, and the O1—C8—C9 bond angle increased from 108.65 (11) to 110.5°. The relative conformation about the bond joining the 3,4-di­hydro-2H-pyran-4-one moiety with the chloro­benzene group of (I) is defined by the torsion angles C1—C6—C7—O1 and C5—C6—C7—O1 of 47.68 (17) and −128.38 (13)° in the crystal, i.e. show (+) syn-clinal and (−) anti-clinal conformations, respectively, and compare with 49.9 and −130.8° in the optimized structure. A superimposed fit of (I) with its energy-minimized mol­ecule gives an r.m.s. deviation of 0.152 Å (Fig. 3[link]).

[Figure 3]
Figure 3
A superimposed fit of (I) (red) and its energy-minimized counterpart (blue).

One of the methyl carbons, C15, is involved in hydrogen bond with O2 of a symmetry-related mol­ecule via H15B to form a R22(12) ring motif. The phenyl carbon C2 is involved in an inter­action with O4 of a symmetry-related mol­ecule via H2 to form a chain along the b axis (Table 1[link] and Fig. 4[link]). These combine to give a three-dimensional architecture. Further, a weak C—H⋯π inter­action between C13 and the centroid (Cg) of the C1–C6 ring via H13B, provides additional stabilization to the crystal (Table 1[link]).

[Figure 4]
Figure 4
Mol­ecular packing of (I), showing the C—H⋯O inter­actions as dashed lines. Other H-atoms are omitted for clarity.

Synthesis and crystallization

To a solution of ethyl 3-(4-chloro­phen­yl)-3-oxo­propano­ate (226 mg, 1.0 mmol), CaCl2 (11 mg, 0.1 mmol), tri­ethyl­amine (278 µL, 2.0 mmol) and 3-methyl­but-2-enoyl chloride (112 µL, 1.0 mmol), di­chloro­methane (4 ml) was added at ambient temperature. After completion of the addition, the reaction mixture was subjected to stirring at room temperature for 3 h. The progress of the reaction was monitored by thin-layer chromatography. The organic layer was separated, filtered and concentrated. The crude product was purified by silica gel column chromatography (EtOAc/hexane = 2:8 v/v as eluent). The product was a colourless solid (yield 90%, 277 mg) and was crystallized in hexa­ne/EtOAc (6:4 v/v (m.p. 354–356 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H17ClO4
Mr 308.74
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.4412 (3), 7.6959 (2), 20.2651 (5)
β (°) 102.311 (2)
V3) 1590.94 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.25 × 0.17 × 0.12
 
Data collection
Diffractometer Bruker Smart CCD Area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.746, 0.845
No. of measured, independent and observed [I > 2σ(I)] reflections 15125, 3995, 2978
Rint 0.018
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.03
No. of reflections 3995
No. of parameters 193
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.26
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), QMOL (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL- 6895. Oak Ridge National Laboratory, Tennessee, USA.]), WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: QMOL (Gans & Shalloway, 2001), Mercury (Macrae et al., 2008) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and PLATON (Spek, 2009).

Ethyl 2,2-dimethyl-4-oxo-6-phenyl-2,3-dihydro-4H-pyran-5-carboxylate top
Crystal data top
C16H17ClO4Dx = 1.289 Mg m3
Mr = 308.74Melting point: 356 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.4412 (3) ÅCell parameters from 3995 reflections
b = 7.6959 (2) Åθ = 2.0–28.4°
c = 20.2651 (5) ŵ = 0.25 mm1
β = 102.311 (2)°T = 296 K
V = 1590.94 (7) Å3Block, colourless
Z = 40.25 × 0.17 × 0.12 mm
F(000) = 648
Data collection top
Bruker Smart CCD Area-detector
diffractometer
3995 independent reflections
Radiation source: fine-focus sealed tube2978 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
phi and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.746, Tmax = 0.845k = 1010
15125 measured reflectionsl = 2427
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.3683P]
where P = (Fo2 + 2Fc2)/3
3995 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43713 (4)0.28175 (7)0.02231 (2)0.06956 (16)
O10.76719 (10)0.25784 (13)0.33513 (5)0.0475 (2)
O21.03226 (13)0.63993 (19)0.40015 (6)0.0736 (4)
O30.96413 (11)0.71077 (17)0.24439 (7)0.0670 (3)
O40.76146 (10)0.76716 (13)0.25811 (5)0.0494 (3)
C10.56401 (14)0.3304 (2)0.22085 (7)0.0476 (3)
H10.52980.31900.25940.057*
C20.48338 (14)0.3058 (2)0.15815 (7)0.0515 (4)
H20.39500.28020.15410.062*
C30.53638 (14)0.3198 (2)0.10154 (7)0.0451 (3)
C40.66627 (14)0.3583 (2)0.10654 (7)0.0464 (3)
H40.70030.36690.06780.056*
C50.74647 (13)0.38433 (18)0.16963 (7)0.0420 (3)
H50.83470.41020.17330.050*
C60.69542 (12)0.37183 (17)0.22726 (6)0.0368 (3)
C70.78238 (12)0.39149 (17)0.29499 (6)0.0374 (3)
C80.83024 (15)0.2695 (2)0.40731 (7)0.0498 (4)
C90.96580 (15)0.3470 (2)0.41366 (7)0.0524 (4)
H9A1.00570.36290.46110.063*
H9B1.02000.26670.39480.063*
C100.96159 (14)0.5182 (2)0.37801 (7)0.0486 (3)
C110.86698 (12)0.52417 (18)0.31346 (6)0.0391 (3)
C120.87223 (13)0.67511 (18)0.26829 (7)0.0415 (3)
C130.75166 (17)0.9164 (2)0.21306 (9)0.0601 (4)
H13A0.83840.96370.21470.072*
H13B0.69891.00600.22790.072*
C140.6913 (2)0.8648 (3)0.14272 (10)0.0745 (5)
H14A0.74700.78260.12690.112*
H14B0.68050.96570.11420.112*
H14C0.60720.81280.14160.112*
C150.74350 (17)0.3815 (3)0.44129 (8)0.0685 (5)
H15A0.73830.49660.42260.103*
H15B0.78000.38690.48890.103*
H15C0.65730.33190.43390.103*
C160.8362 (2)0.0834 (3)0.43209 (10)0.0813 (6)
H16A0.74900.03720.42550.122*
H16B0.87680.08010.47930.122*
H16C0.88660.01490.40720.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0693 (3)0.0924 (4)0.0396 (2)0.0122 (2)0.00473 (17)0.0057 (2)
O10.0577 (6)0.0468 (6)0.0350 (5)0.0092 (5)0.0030 (4)0.0070 (4)
O20.0762 (8)0.0824 (9)0.0531 (7)0.0320 (7)0.0067 (6)0.0001 (6)
O30.0486 (6)0.0729 (8)0.0846 (9)0.0020 (6)0.0258 (6)0.0254 (7)
O40.0498 (6)0.0426 (5)0.0581 (6)0.0033 (4)0.0169 (5)0.0065 (5)
C10.0446 (7)0.0631 (9)0.0370 (7)0.0032 (6)0.0127 (5)0.0018 (6)
C20.0396 (7)0.0701 (10)0.0439 (7)0.0049 (7)0.0067 (6)0.0000 (7)
C30.0495 (7)0.0482 (8)0.0343 (6)0.0006 (6)0.0015 (5)0.0007 (6)
C40.0531 (8)0.0531 (8)0.0347 (6)0.0021 (6)0.0137 (6)0.0010 (6)
C50.0416 (7)0.0468 (8)0.0391 (7)0.0037 (6)0.0120 (5)0.0007 (6)
C60.0403 (6)0.0359 (6)0.0338 (6)0.0003 (5)0.0067 (5)0.0016 (5)
C70.0396 (6)0.0408 (7)0.0326 (6)0.0016 (5)0.0095 (5)0.0020 (5)
C80.0545 (8)0.0584 (9)0.0336 (7)0.0035 (7)0.0025 (6)0.0105 (6)
C90.0478 (8)0.0663 (10)0.0393 (7)0.0017 (7)0.0009 (6)0.0076 (7)
C100.0435 (7)0.0632 (9)0.0377 (7)0.0068 (7)0.0057 (6)0.0012 (6)
C110.0382 (6)0.0442 (7)0.0347 (6)0.0014 (5)0.0075 (5)0.0008 (5)
C120.0397 (7)0.0428 (7)0.0416 (7)0.0057 (6)0.0079 (5)0.0018 (6)
C130.0657 (10)0.0389 (8)0.0749 (11)0.0025 (7)0.0134 (8)0.0102 (8)
C140.0836 (13)0.0675 (12)0.0673 (11)0.0038 (10)0.0047 (10)0.0165 (9)
C150.0616 (10)0.1026 (15)0.0442 (8)0.0000 (10)0.0179 (7)0.0050 (9)
C160.0993 (15)0.0726 (13)0.0627 (11)0.0121 (11)0.0035 (10)0.0308 (10)
Geometric parameters (Å, º) top
Cl1—C31.7401 (13)C8—C91.516 (2)
O1—C71.3415 (16)C8—C151.518 (2)
O1—C81.4732 (16)C9—C101.498 (2)
O2—C101.2177 (19)C9—H9A0.9700
O3—C121.1954 (17)C9—H9B0.9700
O4—C121.3343 (17)C10—C111.4622 (18)
O4—C131.4571 (18)C11—C121.4871 (19)
C1—C21.3795 (19)C13—C141.484 (3)
C1—C61.3876 (19)C13—H13A0.9700
C1—H10.9300C13—H13B0.9700
C2—C31.380 (2)C14—H14A0.9600
C2—H20.9300C14—H14B0.9600
C3—C41.371 (2)C14—H14C0.9600
C4—C51.3854 (18)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.3866 (18)C15—H15C0.9600
C5—H50.9300C16—H16A0.9600
C6—C71.4832 (16)C16—H16B0.9600
C7—C111.3498 (18)C16—H16C0.9600
C8—C161.515 (2)
C7—O1—C8118.01 (11)H9A—C9—H9B107.9
C12—O4—C13117.26 (11)O2—C10—C11123.09 (14)
C2—C1—C6120.99 (12)O2—C10—C9123.08 (13)
C2—C1—H1119.5C11—C10—C9113.82 (13)
C6—C1—H1119.5C7—C11—C10120.09 (12)
C1—C2—C3118.74 (13)C7—C11—C12121.88 (11)
C1—C2—H2120.6C10—C11—C12117.96 (12)
C3—C2—H2120.6O3—C12—O4124.04 (13)
C4—C3—C2121.41 (13)O3—C12—C11124.53 (13)
C4—C3—Cl1119.33 (11)O4—C12—C11111.43 (11)
C2—C3—Cl1119.24 (11)O4—C13—C14110.47 (14)
C3—C4—C5119.57 (12)O4—C13—H13A109.6
C3—C4—H4120.2C14—C13—H13A109.6
C5—C4—H4120.2O4—C13—H13B109.6
C4—C5—C6120.13 (12)C14—C13—H13B109.6
C4—C5—H5119.9H13A—C13—H13B108.1
C6—C5—H5119.9C13—C14—H14A109.5
C5—C6—C1119.15 (12)C13—C14—H14B109.5
C5—C6—C7120.20 (11)H14A—C14—H14B109.5
C1—C6—C7120.54 (11)C13—C14—H14C109.5
O1—C7—C11124.54 (11)H14A—C14—H14C109.5
O1—C7—C6110.78 (11)H14B—C14—H14C109.5
C11—C7—C6124.68 (11)C8—C15—H15A109.5
O1—C8—C16104.45 (13)C8—C15—H15B109.5
O1—C8—C9108.65 (11)H15A—C15—H15B109.5
C16—C8—C9111.84 (14)C8—C15—H15C109.5
O1—C8—C15107.56 (12)H15A—C15—H15C109.5
C16—C8—C15111.90 (15)H15B—C15—H15C109.5
C9—C8—C15112.02 (14)C8—C16—H16A109.5
C10—C9—C8111.96 (12)C8—C16—H16B109.5
C10—C9—H9A109.2H16A—C16—H16B109.5
C8—C9—H9A109.2C8—C16—H16C109.5
C10—C9—H9B109.2H16A—C16—H16C109.5
C8—C9—H9B109.2H16B—C16—H16C109.5
C6—C1—C2—C31.2 (2)C16—C8—C9—C10169.65 (14)
C1—C2—C3—C40.4 (2)C15—C8—C9—C1063.80 (16)
C1—C2—C3—Cl1177.82 (13)C8—C9—C10—O2141.88 (16)
C2—C3—C4—C50.2 (2)C8—C9—C10—C1139.47 (18)
Cl1—C3—C4—C5178.35 (12)O1—C7—C11—C107.7 (2)
C3—C4—C5—C60.2 (2)C6—C7—C11—C10171.07 (12)
C4—C5—C6—C11.0 (2)O1—C7—C11—C12175.43 (12)
C4—C5—C6—C7177.14 (13)C6—C7—C11—C125.8 (2)
C2—C1—C6—C51.6 (2)O2—C10—C11—C7173.28 (15)
C2—C1—C6—C7177.69 (14)C9—C10—C11—C78.07 (19)
C8—O1—C7—C1110.50 (19)O2—C10—C11—C129.8 (2)
C8—O1—C7—C6170.55 (11)C9—C10—C11—C12168.88 (13)
C5—C6—C7—O1128.38 (13)C13—O4—C12—O32.3 (2)
C1—C6—C7—O147.68 (17)C13—O4—C12—C11178.24 (12)
C5—C6—C7—C1150.56 (19)C7—C11—C12—O3115.07 (17)
C1—C6—C7—C11133.37 (15)C10—C11—C12—O361.8 (2)
C7—O1—C8—C16160.72 (14)C7—C11—C12—O465.43 (17)
C7—O1—C8—C941.22 (17)C10—C11—C12—O4117.67 (13)
C7—O1—C8—C1580.23 (16)C12—O4—C13—C1491.59 (17)
O1—C8—C9—C1054.88 (17)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.663.3694 (18)134
C15—H15B···O2ii0.962.663.553 (2)156
C13—H13B···Cgiii0.972.963.6463 (17)129
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Head of Department, CAS in Crystallography and Biophysics, TBI X-ray Facility, University of Madras, India, for his kind help with the data collection and Professor A. Ilangovan, School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India, for fruitful discussions.

References

First citationBruker (2008). SMART, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL- 6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSharmila, N., Sundar, T. V., Sakthivel, P. & Venkatesan, P. (2016). IUCrData, 1, x161924.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, J. J. P. (2016). MOPAC2016. web: https://OpenMOPAC.net.  Google Scholar
First citationSuárez, M., Salfrán, E., Verdecia, Y., Ochoa, E., Alba, L., Martín, N., Martínez, R., Quinteiro, M., Seoane, C., Novoa, H., Blaton, N., Peeters, O. M. & De Ranter, C. (2002). Tetrahedron, 58, 953–960.  Google Scholar
First citationVishnupriya, R., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2013). Acta Cryst. E69, o687–o688.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H.-Z., Kasibhatla, S., Kuemmerle, J., Kemnitzer, W., Ollis-Mason, K., Qiu, L., Crogan-Grundy, C., Tseng, B., Drewe, J. & Cai, S. X. (2005). J. Med. Chem. 48, 5215–5223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZonouz, A. M., Moghani, D. & Okhravi, S. (2014). Curr. Chem. Lett. 3, 71–74.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds