organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(5-Bromo­thio­phen-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole

CROSSMARK_Color_square_no_text.svg

aResearch Department of Physics, S.D.N.B. Vaishnav College for Women, Chrompet, Chennai 600 044, India, and bOrganic & Bioorganic Chemistry, CSIR–Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 January 2017; accepted 18 January 2017; online 20 January 2017)

In the title mol­ecule, C25H15BrN2S, the phenanthrene system is slightly skewed, with a dihedral angle of 8.94 (16)° between the outer benzene rings. The imidazole ring makes dihedral angles of 15.18 (16), 2.94 (15) and 88.46 (16)°, respectively, with the thio­phene ring, the central benzene ring of the phenanthrene unit and the phenyl ring attached to the latter unit. In the mol­ecule, there are two C—H⋯π inter­actions present involving the phenyl ring. In the crystal, mol­ecules are linked by C—H⋯N and C—H⋯Br hydrogen bonds, forming zigzag chains along the a axis. The chains are linked by C—H⋯π inter­actions, forming a three-dimensional supra­molecular structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1H-Phenathro[9,10-d]imidazole derivatives act as multi-functional agents for the treatment of Alzheimer's disease (Liu et al., 2014[Liu, J., Qiu, J., Wang, M., Wang, L., Su, L., Gao, J., Gu, Q., Xu, J., Huang, S. L., Gu, L. Q., Huang, Z. S. & Li, D. (2014). Biochim. Biophys. Acta, 1840, 2886-2903.]). This unit has been identified as an excellent building block for tuning carrier injection properties as well as blue emission (Wang et al., 2011[Wang, Z., Lu, P., Chen, S., Gao, Z., Shen, F., Zhang, W., Xu, Y., Kwok, H. S. & Ma, Y. (2011). J. Mater. Chem. 21, 5451-5456.]). Imidazole derivatives are found to have diverse activities, such as anti-inflammatory, anti­microbial (Divya et al., 2013[Divya, G., Saravanan, K., Santhiya, S., Chandralekha, K. & Lakshmi, S. (2013). Acta Cryst. E69, o1502.]), anti­bacterial, anti­cancer, anti­fungal, analgesic, anti-HIV and anti­tuberculosis (Verma et al., 2013[Verma, A., Joshi, S. & Singh, D. (2013). J. Chem. 2013 Article ID 329412, 12 pages.]). The presence of a 5-bromo­thio­phen-2-yl unit is found to enhance the anti­bacterial activity of piperazinyl quinolones (Foroumadi et al., 2005[Foroumadi, A., Emami, S., Mehni, M., Moshafi, M. H. & Shafiee, A. (2005). Bioorg. Med. Chem. Lett. 15, 4536-4539.]) and anti­microbial activity in pyrazoline derivatives (Sasikala et al., 2012[Sasikala, R., Thirumurthy, K., Mayavel, P. & Thirunarayanan, G. (2012). Org. Med. Chem. Lett. 2: 20.]).

In the title compound, illustrated in Fig. 1[link], the phenanthrene ring system is slightly skewed with a dihedral angle of 8.94 (16)° between the outer benzene rings. The imidazole ring makes dihedral angles of 15.18 (16), 2.94 (15) and 88.46 (16)°, respectively, with the thio­phene ring, the central benzene ring (C6–C8/C13/C14/C19) of the phenanthrene unit, and the phenyl ring (C20–C25). In the mol­ecule, there are two C—H⋯π inter­actions present involving the phenyl ring (Table 1[link] and Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C20–C25 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯N1i 0.93 2.44 3.317 (4) 157
C25—H25⋯Br1ii 0.93 2.93 3.828 (3) 164
C3—H3⋯Cg1 0.93 2.99 3.716 (3) 136
C9—H9⋯Cg1 0.93 2.94 3.789 (3) 153
C15—H15⋯Cg2iii 0.93 2.90 3.580 (4) 131
Symmetry codes: (i) -x-1, -y, -z+2; (ii) -x, -y, -z+2; (iii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The C—H⋯π inter­actions are shown as blue dashed arrows (see Table 1[link]).

In the crystal, mol­ecules are linked by C—H⋯N and C—H⋯Br hydrogen bonds forming zigzag chains propagating along the a-axis direction (Table 1[link] and Fig. 2[link]). The chains are linked by C—H⋯π inter­actions, forming a three-dimensional supra­molecular structure (Table 1[link] and Fig. 3[link]).

[Figure 2]
Figure 2
A partial view along the c axis, of the crystal packing of the title compound. The hydrogen bonds are shown as blue lines (see Table 1[link]).
[Figure 3]
Figure 3
A view along the c axis, of the crystal packing of the title compound. The hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines (see Table 1[link]). For clarity, only the H atoms involved in these inter­actions have been included.

Synthesis and crystallization

9,10-Phenanthrene­quinone (1 equiv.), aniline (1.2 equiv.), 5-bromo­thio­phene-2-carbaldehyde (1.5 equiv.) and ammonium acetate (3.0 equiv.) in glacial acetic acid (10 ml) were refluxed for 24 h under a nitro­gen atmosphere. After cooling to room temperature, the dark-yellow mixture was poured into a methanol solution with stirring. The separated solid was filtered off, washed with methanol and dried to give a white solid. A yellow powder was finally obtained after it was stirred in refluxing ethanol, subsequently filtered and dried in vacuum, yielding 2-(5-bromo­thio­phen-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole. Finally, the title compound was crystallized from dimethyl sulfoxide, giving colourless block-like crystals on evaporation of the solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C25H15BrN2S
Mr 455.36
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 9.2966 (4), 23.0723 (11), 9.8089 (4)
β (°) 109.663 (1)
V3) 1981.26 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.19
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.566, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 38101, 3481, 2628
Rint 0.037
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.098, 1.04
No. of reflections 3481
No. of parameters 262
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.53
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

2-(5-Bromothiophen-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole top
Crystal data top
C25H15BrN2SF(000) = 920
Mr = 455.36Dx = 1.527 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2966 (4) ÅCell parameters from 5918 reflections
b = 23.0723 (11) Åθ = 4.4–47.5°
c = 9.8089 (4) ŵ = 2.19 mm1
β = 109.663 (1)°T = 296 K
V = 1981.26 (15) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2628 reflections with I > 2σ(I)
Bruker Kappa AXEXII CCD scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 1.8°
Tmin = 0.566, Tmax = 0.746h = 1011
38101 measured reflectionsk = 2727
3481 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0479P)2 + 1.1409P]
where P = (Fo2 + 2Fc2)/3
3481 reflections(Δ/σ)max = 0.007
262 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C240.0791 (4)0.08057 (17)1.4777 (3)0.0664 (10)
H240.0155290.0965181.5288630.080*
BR10.00847 (5)0.17241 (2)0.93171 (4)0.07188 (17)
S20.16978 (10)0.05218 (3)0.89706 (8)0.0538 (2)
N20.3378 (2)0.06860 (10)1.0994 (2)0.0410 (5)
C10.0987 (3)0.11209 (12)1.0013 (3)0.0475 (7)
N10.3613 (3)0.05272 (10)0.8668 (2)0.0442 (6)
C200.2781 (3)0.06280 (11)1.2546 (3)0.0404 (6)
C60.4345 (3)0.10315 (11)0.8778 (3)0.0411 (6)
C80.4921 (3)0.16417 (12)1.0589 (3)0.0418 (7)
C50.3052 (3)0.03288 (12)1.0006 (3)0.0418 (6)
C130.5749 (3)0.20196 (12)0.9446 (3)0.0432 (7)
C70.4228 (3)0.11464 (11)1.0187 (3)0.0396 (6)
C40.2256 (3)0.02220 (12)1.0335 (3)0.0410 (6)
C190.5249 (3)0.13826 (12)0.7599 (3)0.0426 (7)
C90.4840 (4)0.17749 (12)1.2015 (3)0.0492 (7)
H90.4328740.1525291.2766290.059*
C20.1179 (3)0.10985 (13)1.1311 (3)0.0499 (7)
H20.0871280.1389271.2005690.060*
C140.5959 (3)0.18781 (12)0.7933 (3)0.0429 (7)
C210.3609 (3)0.03426 (13)1.3267 (3)0.0484 (7)
H210.4565020.0188831.2761190.058*
C180.5507 (3)0.12308 (13)0.6154 (3)0.0522 (7)
H180.5009210.0911290.5942740.063*
C30.1900 (3)0.05827 (13)1.1492 (3)0.0498 (7)
H30.2113010.0496641.2330280.060*
C120.6381 (4)0.25200 (13)0.9816 (4)0.0558 (8)
H120.6896060.2778450.9087850.067*
C250.1370 (3)0.08590 (14)1.3285 (3)0.0540 (8)
H250.0811840.1048281.2790000.065*
C170.6483 (4)0.15479 (14)0.5052 (3)0.0583 (8)
H170.6677860.1435780.4095770.070*
C100.5507 (4)0.22676 (14)1.2310 (4)0.0578 (8)
H100.5446890.2350021.3255300.069*
C150.6928 (4)0.21939 (14)0.6760 (3)0.0548 (8)
H150.7414040.2522390.6941860.066*
C220.2998 (4)0.02878 (14)1.4756 (3)0.0536 (8)
H220.3543030.0091121.5252020.064*
C110.6266 (4)0.26412 (14)1.1203 (4)0.0630 (9)
H110.6702720.2978201.1408910.076*
C230.1604 (4)0.05193 (15)1.5505 (3)0.0600 (9)
H230.1206470.0483031.6507260.072*
C160.7178 (4)0.20332 (15)0.5359 (3)0.0608 (9)
H160.7823610.2253500.4606340.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C240.059 (2)0.087 (3)0.0433 (19)0.0244 (19)0.0035 (16)0.0002 (17)
BR10.1031 (3)0.0497 (2)0.0836 (3)0.01989 (18)0.0588 (2)0.01601 (17)
S20.0765 (6)0.0446 (4)0.0456 (4)0.0110 (4)0.0274 (4)0.0082 (3)
N20.0465 (13)0.0412 (13)0.0323 (12)0.0010 (10)0.0091 (10)0.0014 (10)
C10.0513 (17)0.0407 (16)0.0529 (18)0.0024 (13)0.0207 (14)0.0059 (13)
N10.0505 (13)0.0432 (13)0.0356 (13)0.0054 (11)0.0103 (11)0.0002 (10)
C200.0459 (16)0.0388 (15)0.0338 (15)0.0002 (12)0.0098 (13)0.0017 (11)
C60.0447 (16)0.0376 (15)0.0400 (16)0.0003 (12)0.0130 (13)0.0007 (12)
C80.0417 (15)0.0414 (16)0.0432 (16)0.0082 (12)0.0156 (13)0.0035 (12)
C50.0446 (15)0.0412 (15)0.0363 (16)0.0028 (12)0.0090 (13)0.0029 (12)
C130.0438 (16)0.0367 (15)0.0501 (18)0.0041 (12)0.0170 (13)0.0003 (13)
C70.0417 (15)0.0375 (15)0.0377 (15)0.0059 (12)0.0108 (12)0.0006 (12)
C40.0430 (15)0.0436 (15)0.0333 (15)0.0024 (12)0.0087 (12)0.0009 (12)
C190.0467 (16)0.0411 (16)0.0403 (16)0.0022 (12)0.0147 (13)0.0024 (12)
C90.0618 (19)0.0431 (17)0.0454 (18)0.0076 (14)0.0214 (15)0.0056 (13)
C20.0569 (18)0.0435 (16)0.0478 (18)0.0058 (14)0.0154 (15)0.0119 (14)
C140.0424 (15)0.0418 (15)0.0468 (17)0.0041 (12)0.0179 (13)0.0043 (13)
C210.0454 (16)0.0545 (18)0.0445 (17)0.0099 (14)0.0140 (14)0.0053 (14)
C180.0617 (19)0.0497 (18)0.0464 (18)0.0052 (15)0.0200 (15)0.0035 (14)
C30.0543 (18)0.0558 (18)0.0386 (17)0.0044 (14)0.0150 (14)0.0025 (14)
C120.062 (2)0.0440 (17)0.061 (2)0.0049 (15)0.0193 (16)0.0027 (15)
C250.0552 (18)0.062 (2)0.0440 (18)0.0158 (15)0.0154 (15)0.0030 (15)
C170.072 (2)0.062 (2)0.0424 (18)0.0024 (17)0.0209 (16)0.0116 (15)
C100.071 (2)0.0533 (19)0.056 (2)0.0093 (16)0.0302 (17)0.0149 (16)
C150.0569 (19)0.0488 (18)0.064 (2)0.0123 (15)0.0265 (16)0.0134 (15)
C220.064 (2)0.0571 (19)0.0458 (18)0.0046 (16)0.0258 (16)0.0014 (15)
C110.072 (2)0.0482 (19)0.076 (2)0.0021 (17)0.0337 (19)0.0145 (18)
C230.066 (2)0.072 (2)0.0368 (17)0.0058 (18)0.0105 (16)0.0017 (15)
C160.070 (2)0.066 (2)0.0446 (19)0.0132 (18)0.0172 (16)0.0212 (16)
Geometric parameters (Å, º) top
C24—C231.372 (5)C9—C101.371 (4)
C24—C251.384 (4)C9—H90.9300
C24—H240.9300C2—C31.406 (4)
BR1—C11.869 (3)C2—H20.9300
S2—C11.714 (3)C14—C151.403 (4)
S2—C41.733 (3)C21—C221.383 (4)
N2—C51.381 (3)C21—H210.9300
N2—C71.399 (3)C18—C171.367 (4)
N2—C201.441 (3)C18—H180.9300
C1—C21.345 (4)C3—H30.9300
N1—C51.320 (3)C12—C111.358 (5)
N1—C61.370 (3)C12—H120.9300
C20—C251.376 (4)C25—H250.9300
C20—C211.376 (4)C17—C161.376 (5)
C6—C71.375 (4)C17—H170.9300
C6—C191.430 (4)C10—C111.380 (5)
C8—C91.409 (4)C10—H100.9300
C8—C131.425 (4)C15—C161.366 (4)
C8—C71.431 (4)C15—H150.9300
C5—C41.451 (4)C22—C231.366 (4)
C13—C121.397 (4)C22—H220.9300
C13—C141.468 (4)C11—H110.9300
C4—C31.356 (4)C23—H230.9300
C19—C181.400 (4)C16—H160.9300
C19—C141.413 (4)
C23—C24—C25120.5 (3)C3—C2—H2124.1
C23—C24—H24119.7C15—C14—C19116.8 (3)
C25—C24—H24119.7C15—C14—C13123.0 (3)
C1—S2—C490.96 (14)C19—C14—C13120.1 (2)
C5—N2—C7105.8 (2)C20—C21—C22119.0 (3)
C5—N2—C20126.0 (2)C20—C21—H21120.5
C7—N2—C20127.7 (2)C22—C21—H21120.5
C2—C1—S2112.7 (2)C17—C18—C19120.6 (3)
C2—C1—BR1126.4 (2)C17—C18—H18119.7
S2—C1—BR1120.87 (17)C19—C18—H18119.7
C5—N1—C6104.9 (2)C4—C3—C2114.0 (3)
C25—C20—C21121.0 (3)C4—C3—H3123.0
C25—C20—N2118.7 (3)C2—C3—H3123.0
C21—C20—N2120.3 (2)C11—C12—C13122.1 (3)
N1—C6—C7111.7 (2)C11—C12—H12118.9
N1—C6—C19126.1 (2)C13—C12—H12118.9
C7—C6—C19122.0 (3)C20—C25—C24119.0 (3)
C9—C8—C13118.8 (3)C20—C25—H25120.5
C9—C8—C7124.7 (3)C24—C25—H25120.5
C13—C8—C7116.5 (2)C18—C17—C16119.9 (3)
N1—C5—N2112.6 (2)C18—C17—H17120.1
N1—C5—C4121.7 (2)C16—C17—H17120.1
N2—C5—C4125.7 (2)C9—C10—C11120.0 (3)
C12—C13—C8117.7 (3)C9—C10—H10120.0
C12—C13—C14121.4 (3)C11—C10—H10120.0
C8—C13—C14120.8 (3)C16—C15—C14122.0 (3)
C6—C7—N2105.1 (2)C16—C15—H15119.0
C6—C7—C8122.7 (2)C14—C15—H15119.0
N2—C7—C8132.1 (2)C23—C22—C21120.7 (3)
C3—C4—C5133.3 (3)C23—C22—H22119.6
C3—C4—S2110.4 (2)C21—C22—H22119.6
C5—C4—S2116.2 (2)C12—C11—C10120.4 (3)
C18—C19—C14120.2 (3)C12—C11—H11119.8
C18—C19—C6122.1 (3)C10—C11—H11119.8
C14—C19—C6117.7 (3)C22—C23—C24119.8 (3)
C10—C9—C8120.9 (3)C22—C23—H23120.1
C10—C9—H9119.6C24—C23—H23120.1
C8—C9—H9119.6C15—C16—C17120.5 (3)
C1—C2—C3111.9 (3)C15—C16—H16119.7
C1—C2—H2124.1C17—C16—H16119.7
C4—S2—C1—C20.7 (2)N1—C6—C19—C14177.7 (3)
C4—S2—C1—BR1179.99 (18)C7—C6—C19—C143.6 (4)
C5—N2—C20—C2583.7 (4)C13—C8—C9—C101.9 (4)
C7—N2—C20—C2587.2 (3)C7—C8—C9—C10178.3 (3)
C5—N2—C20—C2195.8 (3)S2—C1—C2—C30.8 (3)
C7—N2—C20—C2193.2 (3)BR1—C1—C2—C3180.0 (2)
C5—N1—C6—C70.4 (3)C18—C19—C14—C150.9 (4)
C5—N1—C6—C19174.3 (3)C6—C19—C14—C15175.6 (3)
C6—N1—C5—N20.4 (3)C18—C19—C14—C13176.9 (3)
C6—N1—C5—C4176.6 (2)C6—C19—C14—C130.4 (4)
C7—N2—C5—N10.3 (3)C12—C13—C14—C157.1 (4)
C20—N2—C5—N1172.2 (2)C8—C13—C14—C15171.4 (3)
C7—N2—C5—C4176.6 (3)C12—C13—C14—C19177.1 (3)
C20—N2—C5—C410.9 (4)C8—C13—C14—C194.4 (4)
C9—C8—C13—C122.9 (4)C25—C20—C21—C220.3 (4)
C7—C8—C13—C12177.2 (2)N2—C20—C21—C22179.2 (3)
C9—C8—C13—C14175.6 (3)C14—C19—C18—C172.1 (4)
C7—C8—C13—C144.3 (4)C6—C19—C18—C17174.2 (3)
N1—C6—C7—N20.2 (3)C5—C4—C3—C2176.5 (3)
C19—C6—C7—N2174.7 (2)S2—C4—C3—C20.2 (3)
N1—C6—C7—C8178.7 (2)C1—C2—C3—C40.4 (4)
C19—C6—C7—C83.8 (4)C8—C13—C12—C112.1 (4)
C5—N2—C7—C60.1 (3)C14—C13—C12—C11176.4 (3)
C20—N2—C7—C6172.3 (2)C21—C20—C25—C240.6 (5)
C5—N2—C7—C8178.2 (3)N2—C20—C25—C24179.9 (3)
C20—N2—C7—C89.4 (4)C23—C24—C25—C200.9 (5)
C9—C8—C7—C6179.5 (3)C19—C18—C17—C162.4 (5)
C13—C8—C7—C60.3 (4)C8—C9—C10—C110.1 (5)
C9—C8—C7—N21.5 (5)C19—C14—C15—C160.0 (4)
C13—C8—C7—N2178.3 (3)C13—C14—C15—C16175.9 (3)
N1—C5—C4—C3161.8 (3)C20—C21—C22—C230.9 (5)
N2—C5—C4—C314.9 (5)C13—C12—C11—C100.1 (5)
N1—C5—C4—S214.3 (4)C9—C10—C11—C121.0 (5)
N2—C5—C4—S2169.0 (2)C21—C22—C23—C240.5 (5)
C1—S2—C4—C30.5 (2)C25—C24—C23—C220.4 (6)
C1—S2—C4—C5177.5 (2)C14—C15—C16—C170.3 (5)
N1—C6—C19—C181.4 (4)C18—C17—C16—C151.5 (5)
C7—C6—C19—C18172.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C20–C25 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C21—H21···N1i0.932.443.317 (4)157
C25—H25···Br1ii0.932.933.828 (3)164
C3—H3···Cg10.932.993.716 (3)136
C9—H9···Cg10.932.943.789 (3)153
C15—H15···Cg2iii0.932.903.580 (4)131
Symmetry codes: (i) x1, y, z+2; (ii) x, y, z+2; (iii) x1/2, y1/2, z1/2.
 

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF IIT Madras, Chennai, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDivya, G., Saravanan, K., Santhiya, S., Chandralekha, K. & Lakshmi, S. (2013). Acta Cryst. E69, o1502.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationForoumadi, A., Emami, S., Mehni, M., Moshafi, M. H. & Shafiee, A. (2005). Bioorg. Med. Chem. Lett. 15, 4536–4539.  CrossRef CAS Google Scholar
First citationLiu, J., Qiu, J., Wang, M., Wang, L., Su, L., Gao, J., Gu, Q., Xu, J., Huang, S. L., Gu, L. Q., Huang, Z. S. & Li, D. (2014). Biochim. Biophys. Acta, 1840, 2886–2903.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSasikala, R., Thirumurthy, K., Mayavel, P. & Thirunarayanan, G. (2012). Org. Med. Chem. Lett. 2: 20.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerma, A., Joshi, S. & Singh, D. (2013). J. Chem. 2013 Article ID 329412, 12 pages.  Google Scholar
First citationWang, Z., Lu, P., Chen, S., Gao, Z., Shen, F., Zhang, W., Xu, Y., Kwok, H. S. & Ma, Y. (2011). J. Mater. Chem. 21, 5451–5456.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds