organic compounds
N-(4-Chlorophenylsulfonyl)-4-iodobenzamide
aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru-6, India, bDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572 103, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru-6, India, and dDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, Palestinian Territories
*Correspondence e-mail: pasuchetan@yahoo.co.in, khalil.i@najah.edu
In the title compound, C13H9ClINO3S, the benzene rings are inclined to one another by 81.6 (2)°. In the crystal, molecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked by C—H⋯O hydrogen bonds, forming sheets parallel to the bc plane. Neighbouring sheets are linked via offset π–π interactions involving inversion-related iodobenzene rings [intercentroid distance = 3.807 (3) Å], forming a three-dimensional supramolecular structure.
Keywords: crystal structure; sulfonamides; benzamides; N-(arylsulfonyl)arylamides; hydrogen bonding; offset π–π interactions.
CCDC reference: 1525994
Structure description
Sulfonamide and amide moieties play a significant role as key constituents in a number of biologically active molecules (Mohan et al., 2013; Manojkumar et al., 2013; Hamad & Abed, 2014). In recent years, N-(arylsulfonyl)-arylamides have received much attention as they constitute an important class of drugs for Alzheimer's disease (Hasegawa & Yamamoto, 2000), anti-bacterial inhibitors of synthetases (Banwell et al., 2000), antagonists for angiotensin II (Chang et al., 1994) and as leukotriene D4-receptors (Musser et al., 1990). Further, N-(arylsulfonyl)-arylamides are known to be potent anti-tumour agents against a broad spectrum of human tumour xenografts (colon, lung, breast, ovary and prostate) in nude mice (Mader et al., 2005). In view of the importance of N-(arylsulfonyl)-arylamides and in continuation of our work on the synthesis and crystal structures of N-(4-chlorophenylsulfonyl)-arylamides (Suchetan et al., 2010a,b,c, 2011), the title compound was synthesized and we report herein on its crystal structure.
The molecular structure of the title compound is illustrated in Fig. 1. The molecule is V-shaped with the dihedral angle between the chlorobenzene and iodobenzene rings (C1–C6 and C8–C13, respectively) being 81.6 (2)°.
In the crystal, molecules are linked by pairs of N1—HN1⋯O1i (Table 1) hydrogen bonds, forming an inversion dimer with an (8) ring motif. The dimers are linked via C12—H12⋯O3ii (Table 1) hydrogen bonds, forming sheets parallel to the bc plane (Fig. 2). Neighbouring sheets are linked via offset π–π interactions involving inversion-related iodobenzene rings (Cg = centroid of ring C8–C13), forming a three-dimensional supramolecular structure, as illustrated in Fig. 3 [Cg⋯Cgiii = 3.807 (3) Å; interplanar distance = 3.653 (2) Å; slippage 1.072 Å; symmetry code (iii) −x + 2, −y, −z + 2].
Synthesis and crystallization
The title compound was prepared by refluxing a mixture of 4-iodobenzoic acid (0.372 g, 1.5 mmol), 4-chlorobenzenesulfonamide (0.287 g, 1.5 mmol) and phosphorousoxychloride (7 ml) for 3 h on a water bath. The resultant mixture was cooled and poured into ice-cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later re-precipitated by acidifying the filtered solution with dilute HCl. It was then filtered, dried and recrystallized from methanol (m.p. 425 K). Colourless prismatic crystals were obtained by slow evaporation of a solution of the title compound in methanol (with a few drops of water).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1525994
https://doi.org/10.1107/S2414314617000256/su4120sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617000256/su4120Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617000256/su4120Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C13H9ClINO3S | F(000) = 1632 |
Mr = 421.62 | Dx = 1.936 Mg m−3 |
Monoclinic, C2/c | Melting point: 425 K |
Hall symbol: -C 2yc | Cu Kα radiation, λ = 1.54178 Å |
a = 18.1163 (18) Å | Cell parameters from 144 reflections |
b = 13.3947 (13) Å | θ = 4.2–64.2° |
c = 12.3002 (13) Å | µ = 20.51 mm−1 |
β = 104.223 (4)° | T = 296 K |
V = 2893.3 (5) Å3 | Prism, colourless |
Z = 8 | 0.28 × 0.27 × 0.25 mm |
Bruker APEXII CCD diffractometer | 2369 independent reflections |
Radiation source: fine-focus sealed tube | 2178 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.072 |
phi and φ scans | θmax = 64.2°, θmin = 4.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −21→20 |
Tmin = 0.069, Tmax = 0.080 | k = −15→15 |
13818 measured reflections | l = −12→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.172 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.1376P)2 + 0.079P] where P = (Fo2 + 2Fc2)/3 |
2369 reflections | (Δ/σ)max = 0.001 |
185 parameters | Δρmax = 1.58 e Å−3 |
1 restraint | Δρmin = −1.82 e Å−3 |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7762 (2) | 0.3242 (4) | 0.7483 (4) | 0.0274 (10) | |
C2 | 0.7821 (3) | 0.3116 (4) | 0.6400 (4) | 0.0361 (11) | |
H2 | 0.7548 | 0.2611 | 0.5958 | 0.043* | |
C3 | 0.8284 (3) | 0.3737 (5) | 0.5966 (4) | 0.0425 (12) | |
H3 | 0.8333 | 0.3650 | 0.5237 | 0.051* | |
C4 | 0.8676 (3) | 0.4492 (4) | 0.6636 (5) | 0.0370 (12) | |
C5 | 0.8628 (3) | 0.4624 (4) | 0.7727 (5) | 0.0391 (12) | |
H5 | 0.8902 | 0.5128 | 0.8168 | 0.047* | |
C6 | 0.8161 (3) | 0.3987 (4) | 0.8160 (5) | 0.0336 (11) | |
H6 | 0.8119 | 0.4063 | 0.8894 | 0.040* | |
C7 | 0.8082 (3) | 0.0884 (4) | 0.8118 (4) | 0.0244 (10) | |
C8 | 0.8589 (2) | 0.0109 (3) | 0.8799 (4) | 0.0220 (9) | |
C9 | 0.9104 (3) | −0.0367 (4) | 0.8302 (4) | 0.0319 (11) | |
H9 | 0.9131 | −0.0180 | 0.7584 | 0.038* | |
C10 | 0.9575 (3) | −0.1108 (4) | 0.8851 (4) | 0.0334 (11) | |
H10 | 0.9926 | −0.1413 | 0.8519 | 0.040* | |
C11 | 0.9518 (2) | −0.1392 (4) | 0.9901 (4) | 0.0268 (10) | |
C12 | 0.9013 (3) | −0.0940 (4) | 1.0412 (4) | 0.0295 (10) | |
H12 | 0.8981 | −0.1142 | 1.1122 | 0.035* | |
C13 | 0.8553 (3) | −0.0179 (3) | 0.9861 (4) | 0.0264 (10) | |
H13 | 0.8217 | 0.0139 | 1.0210 | 0.032* | |
O1 | 0.69380 (19) | 0.2958 (3) | 0.8916 (3) | 0.0374 (8) | |
O2 | 0.66080 (18) | 0.2040 (3) | 0.7129 (3) | 0.0377 (8) | |
O3 | 0.79821 (18) | 0.0931 (3) | 0.7109 (3) | 0.0340 (8) | |
S1 | 0.71643 (8) | 0.24483 (8) | 0.80304 (11) | 0.0264 (4) | |
Cl1 | 0.92287 (8) | 0.52981 (13) | 0.60795 (14) | 0.0601 (5) | |
I1 | 1.02099 (2) | −0.25581 (3) | 1.07348 (3) | 0.0422 (3) | |
N1 | 0.7722 (2) | 0.1537 (3) | 0.8684 (3) | 0.0251 (8) | |
HN1 | 0.788 (3) | 0.169 (4) | 0.934 (3) | 0.023 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.029 (2) | 0.018 (2) | 0.030 (2) | 0.0099 (18) | −0.0016 (17) | 0.0023 (18) |
C2 | 0.044 (3) | 0.025 (3) | 0.034 (2) | −0.003 (2) | 0.0003 (19) | 0.000 (2) |
C3 | 0.052 (3) | 0.034 (3) | 0.039 (3) | 0.000 (2) | 0.007 (2) | 0.003 (2) |
C4 | 0.031 (2) | 0.020 (3) | 0.055 (3) | 0.005 (2) | 0.002 (2) | 0.017 (2) |
C5 | 0.037 (2) | 0.018 (3) | 0.054 (3) | 0.004 (2) | −0.003 (2) | 0.002 (2) |
C6 | 0.039 (3) | 0.016 (3) | 0.042 (3) | 0.010 (2) | 0.003 (2) | 0.001 (2) |
C7 | 0.023 (2) | 0.017 (3) | 0.032 (2) | −0.0035 (18) | 0.0049 (17) | −0.0002 (19) |
C8 | 0.024 (2) | 0.008 (2) | 0.033 (2) | −0.0047 (16) | 0.0054 (16) | −0.0032 (17) |
C9 | 0.043 (3) | 0.021 (3) | 0.035 (2) | 0.007 (2) | 0.0149 (19) | 0.0056 (19) |
C10 | 0.037 (2) | 0.023 (3) | 0.044 (3) | 0.010 (2) | 0.017 (2) | 0.005 (2) |
C11 | 0.0203 (19) | 0.015 (2) | 0.041 (2) | 0.0018 (17) | 0.0004 (17) | −0.0008 (18) |
C12 | 0.039 (2) | 0.018 (2) | 0.030 (2) | 0.0058 (19) | 0.0069 (18) | 0.0031 (18) |
C13 | 0.029 (2) | 0.013 (2) | 0.038 (2) | 0.0068 (18) | 0.0107 (17) | −0.0039 (18) |
O1 | 0.0419 (19) | 0.029 (2) | 0.0407 (18) | 0.0185 (16) | 0.0087 (14) | 0.0006 (16) |
O2 | 0.0268 (16) | 0.030 (2) | 0.0481 (19) | 0.0005 (15) | −0.0071 (14) | −0.0011 (17) |
O3 | 0.0409 (17) | 0.028 (2) | 0.0330 (17) | 0.0073 (14) | 0.0079 (13) | 0.0012 (14) |
S1 | 0.0267 (8) | 0.0184 (7) | 0.0315 (7) | 0.0071 (4) | 0.0020 (5) | 0.0020 (4) |
Cl1 | 0.0554 (9) | 0.0455 (9) | 0.0771 (10) | −0.0123 (7) | 0.0119 (7) | 0.0213 (7) |
I1 | 0.0384 (4) | 0.0233 (4) | 0.0621 (4) | 0.01269 (11) | 0.0068 (3) | 0.01117 (13) |
N1 | 0.0307 (19) | 0.016 (2) | 0.0258 (19) | 0.0058 (16) | 0.0024 (14) | −0.0003 (16) |
C1—C2 | 1.374 (7) | C8—C13 | 1.379 (7) |
C1—C6 | 1.385 (8) | C8—C9 | 1.390 (6) |
C1—S1 | 1.764 (5) | C9—C10 | 1.374 (7) |
C2—C3 | 1.379 (8) | C9—H9 | 0.9300 |
C2—H2 | 0.9300 | C10—C11 | 1.375 (7) |
C3—C4 | 1.385 (8) | C10—H10 | 0.9300 |
C3—H3 | 0.9300 | C11—C12 | 1.370 (7) |
C4—C5 | 1.377 (8) | C11—I1 | 2.105 (4) |
C4—Cl1 | 1.725 (5) | C12—C13 | 1.384 (7) |
C5—C6 | 1.395 (8) | C12—H12 | 0.9300 |
C5—H5 | 0.9300 | C13—H13 | 0.9300 |
C6—H6 | 0.9300 | O1—S1 | 1.429 (4) |
C7—O3 | 1.211 (6) | O2—S1 | 1.413 (4) |
C7—N1 | 1.379 (6) | S1—N1 | 1.661 (4) |
C7—C8 | 1.499 (7) | N1—HN1 | 0.81 (3) |
C2—C1—C6 | 121.1 (5) | C10—C9—C8 | 121.2 (4) |
C2—C1—S1 | 119.9 (4) | C10—C9—H9 | 119.4 |
C6—C1—S1 | 119.0 (4) | C8—C9—H9 | 119.4 |
C1—C2—C3 | 120.1 (5) | C9—C10—C11 | 118.7 (4) |
C1—C2—H2 | 119.9 | C9—C10—H10 | 120.6 |
C3—C2—H2 | 119.9 | C11—C10—H10 | 120.6 |
C2—C3—C4 | 118.8 (5) | C12—C11—C10 | 121.5 (4) |
C2—C3—H3 | 120.6 | C12—C11—I1 | 119.3 (3) |
C4—C3—H3 | 120.6 | C10—C11—I1 | 119.3 (3) |
C5—C4—C3 | 121.9 (5) | C11—C12—C13 | 119.4 (4) |
C5—C4—Cl1 | 119.2 (4) | C11—C12—H12 | 120.3 |
C3—C4—Cl1 | 118.9 (4) | C13—C12—H12 | 120.3 |
C4—C5—C6 | 118.8 (5) | C8—C13—C12 | 120.4 (4) |
C4—C5—H5 | 120.6 | C8—C13—H13 | 119.8 |
C6—C5—H5 | 120.6 | C12—C13—H13 | 119.8 |
C1—C6—C5 | 119.2 (5) | O2—S1—O1 | 120.0 (2) |
C1—C6—H6 | 120.4 | O2—S1—N1 | 109.1 (2) |
C5—C6—H6 | 120.4 | O1—S1—N1 | 103.7 (2) |
O3—C7—N1 | 121.0 (4) | O2—S1—C1 | 108.6 (2) |
O3—C7—C8 | 121.7 (4) | O1—S1—C1 | 108.7 (2) |
N1—C7—C8 | 117.2 (4) | N1—S1—C1 | 105.7 (2) |
C13—C8—C9 | 118.8 (4) | C7—N1—S1 | 121.9 (3) |
C13—C8—C7 | 124.0 (4) | C7—N1—HN1 | 125 (4) |
C9—C8—C7 | 117.2 (4) | S1—N1—HN1 | 109 (4) |
C6—C1—C2—C3 | 0.0 (7) | C9—C10—C11—I1 | 178.1 (4) |
S1—C1—C2—C3 | 179.7 (4) | C10—C11—C12—C13 | −0.2 (7) |
C1—C2—C3—C4 | −0.9 (8) | I1—C11—C12—C13 | −179.4 (3) |
C2—C3—C4—C5 | 1.5 (8) | C9—C8—C13—C12 | −1.0 (7) |
C2—C3—C4—Cl1 | −177.7 (4) | C7—C8—C13—C12 | 176.5 (4) |
C3—C4—C5—C6 | −1.1 (7) | C11—C12—C13—C8 | 1.3 (7) |
Cl1—C4—C5—C6 | 178.1 (4) | C2—C1—S1—O2 | −22.7 (4) |
C2—C1—C6—C5 | 0.4 (7) | C6—C1—S1—O2 | 156.9 (4) |
S1—C1—C6—C5 | −179.3 (4) | C2—C1—S1—O1 | −155.0 (4) |
C4—C5—C6—C1 | 0.2 (7) | C6—C1—S1—O1 | 24.7 (4) |
O3—C7—C8—C13 | −159.7 (5) | C2—C1—S1—N1 | 94.3 (4) |
N1—C7—C8—C13 | 19.3 (6) | C6—C1—S1—N1 | −86.1 (4) |
O3—C7—C8—C9 | 17.9 (7) | O3—C7—N1—S1 | −2.7 (6) |
N1—C7—C8—C9 | −163.1 (4) | C8—C7—N1—S1 | 178.3 (3) |
C13—C8—C9—C10 | −0.3 (7) | O2—S1—N1—C7 | 53.2 (4) |
C7—C8—C9—C10 | −178.0 (5) | O1—S1—N1—C7 | −177.7 (4) |
C8—C9—C10—C11 | 1.4 (8) | C1—S1—N1—C7 | −63.5 (4) |
C9—C10—C11—C12 | −1.1 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—HN1···O1i | 0.81 (4) | 2.14 (4) | 2.943 (5) | 168 (6) |
C12—H12···O3ii | 0.93 | 2.43 | 3.124 (6) | 131 |
Symmetry codes: (i) −x+3/2, −y+1/2, −z+2; (ii) x, −y, z+1/2. |
Acknowledgements
The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data.
References
Banwell, M. G., Crasto, C. F., Easton, C. J., Forrest, A. K., Karoli, T., March, D. R., Mensah, L., Nairn, M. R., O'Hanlon, P. J., Oldham, M. D. & Yue, W. (2000). Bioorg. Med. Chem. Lett. 10, 2263–2266. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2009). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chang, L. L., Ashton, W. T., Flanagan, K. L., Chen, T. B., O'Malley, S. S., Zingaro, G. J., Siegl, P. K. S., Kivlighn, S. D., Lotti, V. J. & Chang, R. S. L. (1994). J. Med. Chem. 37, 4464–4478. CrossRef CAS Web of Science Google Scholar
Hamad, A. S. & Abed, F. S. (2014). J. Appl. Chem, 3, 56–63. Google Scholar
Hasegawa, T. & Yamamoto, H. (2000). Bull. Chem. Soc. Jpn, 73, 423–428. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mader, M., Shih, C., Considine, E., Dios, A. D., Grossman, C., Hipskind, P., Lin, H., Lobb, K., Lopez, B., Lopez, J., Cabrejas, L., Richett, M., White, W., Cheung, Y., Huang, Z., Reilly, J. & Dinn, S. (2005). Bioorg. Med. Chem. Lett. 15, 617–620. Web of Science CrossRef PubMed CAS Google Scholar
Manojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhu Chakrapani Rao, T. & Harikrishna, T. (2013). J. Appl. Chem, 2, 730–737. CAS Google Scholar
Mohan, N. R., Sreenivasa, S., Manojkumar, K. E. & Chakrapani Rao, T. M. (2013). J. Appl. Chem, 2, 722–729. Google Scholar
Musser, J. H., Kreft, A. F., Bender, R. H. W., Kubrak, D. M., Grimes, D., Carlson, R. P., Hand, J. M. & Chang, J. (1990). J. Med. Chem. 33, 240–245. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o904. Web of Science CSD CrossRef IUCr Journals Google Scholar
Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o766. Web of Science CSD CrossRef IUCr Journals Google Scholar
Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1253. Web of Science CSD CrossRef IUCr Journals Google Scholar
Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010c). Acta Cryst. E66, o1501. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.