organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-3-(2,3-Di­chloro­phen­yl)-1-(2-meth­­oxy­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Shri Pillappa College of Engineering, Bengaluru 560 089, India, bDepartment of Physics, Prist University, Vallam, Tanjavur 513 403, India, cInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, dDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, eDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and fDepartment of Physics, Acharya Institute of Technology, Soldevanahalli, Bengaluru 560 107, India
*Correspondence e-mail: naveen@ioe.uni-mysore.ac.in, manjunathhr@acharya.ac.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 23 December 2016; accepted 28 December 2016; online 6 January 2017)

In the title compound, C16H12Cl2O2, the olefinic double bond adopts an E configuration. The mol­ecule is non-planar, as shown by the dihedral angle of 15.40 (19)° between the 2,3-di­chloro­phenyl ring and the 2-meth­oxy­phenyl ring. In the crystal, mol­ecules are linked via weak C—H⋯O hydrogen bonds, forming zigzag chains propagating along the c axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones form the central core for the construction of a variety of bioactive compounds. The usual method for the synthesis of chalcones involves the condensation of aromatic aldehyde and aromatic ketone in the presence of aqueous alkaline bases (Naveen et al., 2016a[Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016a). IUCrData, 1, x161800.]). Chalcones and their derivatives demonstrate a wide range of biological activities such as anti-diabetic, anti-neoplastic, anti-hypertensive, anti-inflammatory, anti-malarial, anti-oxidant, anti-fungal, etc. (Mahapatra et al., 2015[Mahapatra, D. K., Asati, V. & Bharti, S. K. (2015). Eur. J. Med. Chem. 92, 839-865.]). The α,β-unsaturated carbonyl system of chalcones makes them useful as building blocks in organic synthesis. They have been efficiently employed as precursors in the synthesis of biologically potent benzo­thia­zepines (Naveen et al., 2016b[Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Abdoh, M. (2016b). IUCrData, 1, x161974.]). In view of the diverse applications of chalcones and as a part of our ongoing work on such mol­ecules (Tejkiran et al., 2016[Tejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. A, 324, 33-39.]), we report here the synthesis and crystal structure of the title compound.

The title mol­ecule (Fig. 1[link]) is non-planar, with a dihedral angle of 15.40 (19)° between the di­chloro­phenyl (C1–C6) and meth­oxy­phenyl (C10–C15) rings that are bridged by the olefinic double bond C7=C8. This is comparable to the value of 19.13 (15)° reported for the related chalcone derivative (E)-3-(2,3-di­chloro­phen­yl)-1-(4-fluoro­phen­yl)prop-2-en-1-one (Naveen et al., 2016a[Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016a). IUCrData, 1, x161800.]). The trans configuration of the C7=C8 double bond in the central enone group is confirmed by the C7=C8—C9—C10 torsion angle value of 162.3 (4)°. The carbonyl group at C9 lies nearly in the plane of the benzene ring (C10–C15), as indicated by the torsion angle values of −10.4 (5)° and −19.3 (6)° for O1—C9—C10—C11 and C7—C8—C9—O1, respectively. The meth­oxy group at C15 also lies in the plane of the benzene ring (C10–C15), as indicated by the torsion angle value of 0.7 (5)° for C16—O2—C15—C14.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked via weak C—H⋯O hydrogen bonds, forming zigzag chains propagating along the c axis (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 0.93 2.40 3.315 (5) 167
C16—H16A⋯O1ii 0.96 2.51 3.443 (5) 164
Symmetry codes: (i) [-x+1, -y, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. The dashed lines represent hydrogen bonds (see Table 1[link]) and, for clarity, only H atoms H14 and H16A have been included.

Synthesis and crystallization

A mixture of 2,4,5-tri­meth­oxy­benzaldehyde (5 mmol), 1-(benzo[d][1,3]dioxol-5-yl)ethanone (5 mmol) and sodium hydroxide (5 mmol) in 95% ethyl alcohol (25 ml) was stirred at room temperature for 3 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was poured in to ice-cold water and kept in the refrigerator overnight. The solid that formed was filtered off, and washed with cold hydro­chloric acid (5%). Yellow block-like crystals were obtained by slow evaporation of a solution in methanol (yield 89%, m.p. 399–401 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H12Cl2O2
Mr 307.16
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 296
a, b, c (Å) 24.7531 (9), 3.9036 (2), 14.3360 (6)
V3) 1385.23 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.20
Crystal size (mm) 0.28 × 0.26 × 0.25
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.386, 0.420
No. of measured, independent and observed [I > 2σ(I)] reflections 7897, 2175, 1893
Rint 0.067
(sin θ/λ)max−1) 0.586
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 1.03
No. of reflections 2175
No. of parameters 182
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.37
Absolute structure 971 (86%) Friedel pairs; Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.03 (2)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

(E)-3-(2,3-Dichlorophenyl)-1-(2-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H12Cl2O2F(000) = 632
Mr = 307.16Dx = 1.473 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 1893 reflections
a = 24.7531 (9) Åθ = 3.6–64.6°
b = 3.9036 (2) ŵ = 4.20 mm1
c = 14.3360 (6) ÅT = 296 K
V = 1385.23 (10) Å3Block, yellow
Z = 40.28 × 0.26 × 0.25 mm
Data collection top
Bruker X8 Proteum
diffractometer
2175 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode1893 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.067
Detector resolution: 18.4 pixels mm-1θmax = 64.6°, θmin = 3.6°
φ and ω scansh = 2827
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 44
Tmin = 0.386, Tmax = 0.420l = 1616
7897 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0694P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2175 reflectionsΔρmax = 0.33 e Å3
182 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: 971 (86%) Friedel pairs; Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (2)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.80662 (4)1.1660 (3)0.33612 (8)0.0407 (3)
Cl20.69437 (4)0.8842 (3)0.26987 (7)0.0381 (3)
O10.51800 (11)0.4104 (7)0.3625 (2)0.0379 (10)
O20.55245 (10)0.1930 (7)0.6377 (2)0.0327 (8)
C10.70987 (16)0.8885 (10)0.3882 (3)0.0287 (12)
C20.67209 (15)0.7666 (10)0.4528 (3)0.0285 (11)
C30.68707 (15)0.7817 (13)0.5468 (3)0.0328 (11)
C40.73578 (17)0.9109 (11)0.5754 (3)0.0363 (14)
C50.77279 (16)1.0284 (11)0.5106 (3)0.0357 (14)
C60.75962 (15)1.0168 (11)0.4167 (3)0.0318 (11)
C70.62046 (16)0.6269 (10)0.4238 (3)0.0307 (12)
C80.57938 (16)0.5491 (11)0.4795 (3)0.0315 (11)
C90.52915 (15)0.3920 (10)0.4451 (3)0.0277 (11)
C100.49098 (15)0.2178 (9)0.5104 (3)0.0266 (11)
C110.44040 (15)0.1365 (10)0.4748 (3)0.0313 (11)
C120.40200 (15)0.0369 (10)0.5257 (3)0.0352 (13)
C130.41414 (17)0.1308 (10)0.6165 (3)0.0383 (14)
C140.46347 (17)0.0531 (11)0.6552 (3)0.0360 (12)
C150.50218 (16)0.1218 (9)0.6032 (3)0.0291 (11)
C160.56561 (19)0.0802 (11)0.7298 (3)0.0373 (14)
H30.663000.700900.591500.0390*
H40.744000.919700.638700.0440*
H50.806001.114000.529800.0430*
H70.615700.588200.360300.0370*
H80.582500.595800.542900.0380*
H110.432100.201900.414100.0370*
H120.368600.090000.499600.0420*
H130.388600.247800.651800.0460*
H140.471000.117600.716200.0430*
H16A0.541000.181700.773700.0560*
H16B0.601900.147900.744700.0560*
H16C0.562700.164800.733000.0560*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0297 (5)0.0456 (6)0.0467 (7)0.0055 (4)0.0074 (4)0.0066 (5)
Cl20.0386 (5)0.0509 (6)0.0248 (5)0.0053 (4)0.0038 (4)0.0028 (4)
O10.0391 (16)0.0498 (18)0.0248 (16)0.0084 (13)0.0048 (12)0.0012 (12)
O20.0357 (15)0.0411 (15)0.0212 (14)0.0048 (13)0.0032 (11)0.0045 (11)
C10.034 (2)0.025 (2)0.027 (2)0.0053 (16)0.0015 (17)0.0002 (15)
C20.0266 (19)0.032 (2)0.027 (2)0.0017 (17)0.0019 (16)0.0003 (16)
C30.0324 (19)0.039 (2)0.027 (2)0.002 (2)0.0010 (17)0.0017 (16)
C40.035 (2)0.046 (3)0.028 (2)0.0023 (19)0.0037 (17)0.0019 (19)
C50.030 (2)0.035 (2)0.042 (3)0.0002 (17)0.0047 (18)0.0006 (19)
C60.0274 (17)0.028 (2)0.040 (2)0.0005 (17)0.0033 (16)0.0023 (17)
C70.032 (2)0.040 (2)0.020 (2)0.0046 (18)0.0007 (15)0.0016 (15)
C80.0315 (19)0.040 (2)0.023 (2)0.0008 (19)0.0050 (15)0.0015 (16)
C90.0267 (18)0.0285 (19)0.028 (2)0.0040 (15)0.0015 (16)0.0041 (14)
C100.0270 (18)0.0244 (18)0.0284 (19)0.0026 (15)0.0015 (15)0.0040 (16)
C110.0270 (19)0.029 (2)0.038 (2)0.0024 (16)0.0014 (16)0.0050 (15)
C120.0256 (18)0.034 (2)0.046 (3)0.0032 (17)0.0018 (18)0.005 (2)
C130.035 (2)0.036 (2)0.044 (3)0.0021 (18)0.0114 (18)0.0003 (18)
C140.037 (2)0.037 (2)0.034 (2)0.001 (2)0.0063 (17)0.0037 (17)
C150.031 (2)0.0274 (19)0.029 (2)0.0040 (16)0.0007 (16)0.0043 (14)
C160.049 (3)0.034 (2)0.029 (2)0.0068 (19)0.0054 (18)0.0011 (16)
Geometric parameters (Å, º) top
Cl1—C61.740 (4)C11—C121.376 (6)
Cl2—C11.739 (4)C12—C131.385 (6)
O1—C91.218 (5)C13—C141.375 (6)
O2—C151.368 (5)C14—C151.393 (6)
O2—C161.429 (5)C3—H30.9300
C1—C21.400 (6)C4—H40.9300
C1—C61.391 (6)C5—H50.9300
C2—C31.399 (6)C7—H70.9300
C2—C71.450 (5)C8—H80.9300
C3—C41.370 (6)C11—H110.9300
C4—C51.383 (6)C12—H120.9300
C5—C61.386 (6)C13—H130.9300
C7—C81.328 (6)C14—H140.9300
C8—C91.472 (6)C16—H16A0.9600
C9—C101.494 (6)C16—H16B0.9600
C10—C111.389 (5)C16—H16C0.9600
C10—C151.410 (6)
C15—O2—C16118.6 (3)O2—C15—C14122.1 (4)
Cl2—C1—C2119.7 (3)C10—C15—C14120.0 (4)
Cl2—C1—C6119.0 (3)C2—C3—H3119.00
C2—C1—C6121.3 (4)C4—C3—H3119.00
C1—C2—C3116.5 (4)C3—C4—H4120.00
C1—C2—C7121.8 (4)C5—C4—H4120.00
C3—C2—C7121.7 (4)C4—C5—H5120.00
C2—C3—C4122.5 (4)C6—C5—H5121.00
C3—C4—C5120.3 (4)C2—C7—H7117.00
C4—C5—C6119.1 (4)C8—C7—H7117.00
Cl1—C6—C1121.2 (3)C7—C8—H8119.00
Cl1—C6—C5118.5 (3)C9—C8—H8119.00
C1—C6—C5120.4 (4)C10—C11—H11119.00
C2—C7—C8126.0 (4)C12—C11—H11119.00
C7—C8—C9122.7 (4)C11—C12—H12121.00
O1—C9—C8119.5 (4)C13—C12—H12121.00
O1—C9—C10119.5 (3)C12—C13—H13120.00
C8—C9—C10120.9 (4)C14—C13—H13120.00
C9—C10—C11116.4 (4)C13—C14—H14120.00
C9—C10—C15126.0 (3)C15—C14—H14120.00
C11—C10—C15117.6 (4)O2—C16—H16A109.00
C10—C11—C12122.7 (4)O2—C16—H16B110.00
C11—C12—C13118.6 (4)O2—C16—H16C110.00
C12—C13—C14120.9 (4)H16A—C16—H16B109.00
C13—C14—C15120.2 (4)H16A—C16—H16C109.00
O2—C15—C10117.8 (3)H16B—C16—H16C109.00
C16—O2—C15—C10176.5 (3)C2—C7—C8—C9176.9 (4)
C16—O2—C15—C140.7 (5)C7—C8—C9—O119.3 (6)
Cl2—C1—C2—C3179.3 (3)C7—C8—C9—C10162.3 (4)
Cl2—C1—C2—C71.7 (5)O1—C9—C10—C1110.4 (5)
C6—C1—C2—C30.1 (6)O1—C9—C10—C15167.8 (4)
C6—C1—C2—C7178.9 (4)C8—C9—C10—C11168.1 (4)
Cl2—C1—C6—Cl11.0 (5)C8—C9—C10—C1513.7 (6)
Cl2—C1—C6—C5179.0 (3)C9—C10—C11—C12177.2 (4)
C2—C1—C6—Cl1179.7 (3)C15—C10—C11—C121.2 (6)
C2—C1—C6—C50.4 (6)C9—C10—C15—O20.0 (6)
C1—C2—C3—C40.6 (7)C9—C10—C15—C14177.2 (4)
C7—C2—C3—C4179.6 (4)C11—C10—C15—O2178.3 (3)
C1—C2—C7—C8170.2 (4)C11—C10—C15—C141.0 (5)
C3—C2—C7—C810.8 (7)C10—C11—C12—C130.7 (6)
C2—C3—C4—C51.0 (7)C11—C12—C13—C140.0 (6)
C3—C4—C5—C60.7 (7)C12—C13—C14—C150.1 (6)
C4—C5—C6—Cl1180.0 (3)C13—C14—C15—O2177.5 (4)
C4—C5—C6—C10.0 (6)C13—C14—C15—C100.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.932.403.315 (5)167
C16—H16A···O1ii0.962.513.443 (5)164
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z+1/2.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahapatra, D. K., Asati, V. & Bharti, S. K. (2015). Eur. J. Med. Chem. 92, 839–865.  Web of Science CrossRef CAS Google Scholar
First citationNaveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016a). IUCrData, 1, x161800.  Google Scholar
First citationNaveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Abdoh, M. (2016b). IUCrData, 1, x161974.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. A, 324, 33–39.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds