organic compounds
N,N-Dibutylanilinium hydrogen squarate
aDepartment of Chemistry and Biochemistry, St. Catherine University, 2004 Randolph Avenue, St Paul, Minnesota 55105, USA, and bDepartment of Chemistry, Hamline University, 1536 Hewitt Avenue, Saint Paul, MN 55104, USA
*Correspondence e-mail: dejanzen@stkate.edu
The title molecular salt, C14H24N+·C4HO4− [systematic name: N,N-dibutylbenzenaminium 2-hydroxy-3,4-dioxocyclobut-1-en-1-olate], is composed of a protonated N,N-dibutylaniline cation with a hydrogen squarate monoanion (common names). The disparate bond lengths within the squarate anion suggest delocalization of the negative charge over only part of the squarate moiety. In the crystal, the squarate anions are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R22(10) ring motif. The dimers are linked to the cations on either side by N—H⋯O hydrogen bonds, and weak C—H⋯O hydrogen bonds. These cation–anion–anion–cation units are linked by further C—H⋯O hydrogen bonds, forming layers parallel to (102).
Keywords: crystal structure; hydrogen squarate; N,N-dibutylanilinium; molecular salt; hydrogen bonding.
CCDC reference: 1524945
Structure description
Squaraine dyes have been studied extensively as materials for use in organic photovoltaic devices (Chen et al., 2014, 2016; Feron et al., 2016; Saccone et al., 2016) as well as optical sensors (Sun et al., 2016). The solid-state optical activity of these materials is highly dependent on intermolecular packing features. In the case of squaraine dyes, both and possible hydrogen bonding play pivotal roles in the aggregation patterns of these materials (Kaczmarek-Kedziera & Kedziera, 2016). During the course of our studies of squaraine dyes, we synthesized a salt precursor to an asymmetrical squaraine. Herein, we report on the of the title molecular salt, N,N-dibutylanilinium hydrogen squarate.
The structure of the title molecular salt is illustrated in Fig. 1. The consists of an N,N-dibutyl anilinium cation with a hydrogen squarate anion. Positional disorder was modeled in one butyl group (C15–C18) over two positions with an appropriate mix of constraints and restraints. The pattern of observed C—C and C—O bond lengths in the squarate ring are consistent with the negative charge resonance-stabilized at atoms O1 and O3 (Fig. 2). The C4—O4 bond distance of 1.216 (2) Å, is interpreted as a double bond, while the C3—O3 [1.255 (2) Å] and C1—O1 [1.249 (2) Å] bond lengths are indicative of bond orders between 1–2. Likewise, the C1—C2 [1.425 (2) Å] and C2—C3 [1.417 (2) Å] bond distances are shorter than bonds C1—C4 [1.490 (2) Å] and C3—C4 [1.492 (2) Å], consistent with the proposed dominant resonance structures (Fig. 2).
In the crystal, two unique intermolecular hydrogen bonds are present (Fig. 3, Table 1). The alcohol moiety (O2—H2) acts as a donor with an inversion-related hydrogen squarate O3 atom at (−x, −y + 1, −z + 2) as the acceptor. The inversion-related hydrogen squarate anions form an inversion dimer with an R22(10) ring motif. The protonated amine moiety (N1—H1) acts as a donor in a hydrogen bond with the acceptor O1 of the hydrogen squarate anion. Hence, the dimers are linked to the cations on either side by N—H⋯O hydrogen bonds (Fig. 3), and weak C15—H15A⋯O4 hydrogen bonds (Table 1). These cation–anion–anion–cation units are linked by C9—H9⋯O1ii hydrogen bonds, forming layers parallel to plane (102); see Table 1 and Fig. 4.
While numerous other protonated amine salts of hydrogen squarate have been reported, only a few involve a cation with no other hydrogen-bond donors or acceptors, only the hydrogen squarate anion and no solvent. Examples include 4-phenylpyridinium hydrogen squarate (Kolev et al., 2004) and 2-methylpyridinium hydrogen squarate (Korkmaz & Bulut, 2014), which have a similar hydrogen-bonding pattern with the R22(10) motif and capping N—H donors/squarate oxygen acceptor [D11(2)] motifs. Others, such as pyridinium hydrogen squarate (Modec, 2015) pack with a C11(5) chain motif of hydrogen squarate anions with dimer D11(2) motifs on the periphery of the hydrogen-bonded chains of hydrogen squarate anions. A more complex R44(2) tetramer hydrogen-bonded ring motif is found in the structure of 1,2,3,4-tetrahydroisoquinolinium hydrogen squarate (Kolev et al., 2007).
Synthesis and crystallization
Under an argon atmosphere, squaric acid (1.5 g, 13.5 mmol) and N,N-dibutylanaline (6 ml, 26 mmol) were dissolved in a mixture of toluene (20 ml) and 1-butanol (20 ml). The reaction mixture was heated at 353 K with constant stirring for 8 h. During this time period, the solution turned a golden brown color. About 35 ml of azeotropic distillate was collected using a short path distillation setup with multiple flask take-off. The solution was purged with Ar and left to cool to rt (15 h). The solution was then reheated using an oil bath at 388 K for 6 h then allowed to cool to rt and stirred for 48 h under Ar. No additional color change was observed. Crystals grown from the reaction mixture were removed from the mother liquor three days after heating. The crystals were washed with 15 ml of hexanes, collected by vacuum filtration and stored in a vial at rt (yield 2.92 g, 9.2 mmol, 70%). 1H NMR (600 MHz, CD3OD): 8.03 (s, 1H), 7.23 (br s, 2H), 6.85 (br s, 2H), 6.70 (br s, 1H), 2.92 (t, 2H), 2.74 (t, 2H), 1.53 (p, 4H), 1.34 (m, 4H), 0.92 (t, 6H).
Refinement
Crystal data, data collection and structure . Positional disorder was modeled in one of the butyl groups over two conformations (C15–C18: C15′–C18′), which have a refined occupancy ratio of 0.825 (3): 0.175 (3). The 1,2 and 1,3 bond distances of the disordered components were restrained to be the same within standard uncertainties of 0.02 and 0.04 Å, respectively. The displacement parameters of the pairwise carbon atoms of the disordered components were constrained to be equal.
details are summarized in Table 2
|
Structural data
CCDC reference: 1524945
https://doi.org/10.1107/S2414314616020654/su4117sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616020654/su4117Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616020654/su4117Isup3.cml
Data collection: CrystalClear (Rigaku, 2011); cell
CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).C14H24N+·C4HO4− | F(000) = 688.00 |
Mr = 319.40 | Dx = 1.170 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
a = 10.3476 (16) Å | Cell parameters from 11464 reflections |
b = 10.7877 (17) Å | θ = 3.1–25.2° |
c = 16.922 (3) Å | µ = 0.08 mm−1 |
β = 106.214 (8)° | T = 173 K |
V = 1813.9 (5) Å3 | Prism, colorless |
Z = 4 | 0.33 × 0.23 × 0.15 mm |
Rigaku XtaLAB mini diffractometer | 2316 reflections with F2 > 2.0σ(F2) |
Detector resolution: 6.849 pixels mm-1 | Rint = 0.042 |
ω scans | θmax = 25.0°, θmin = 3.1° |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | h = −12→12 |
Tmin = 0.826, Tmax = 0.988 | k = −12→12 |
14670 measured reflections | l = −20→20 |
3196 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0475P)2 + 0.2934P] where P = (Fo2 + 2Fc2)/3 |
3196 reflections | (Δ/σ)max < 0.001 |
232 parameters | Δρmax = 0.12 e Å−3 |
5 restraints | Δρmin = −0.16 e Å−3 |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C15 | 0.1766 (5) | 0.1587 (3) | 0.6843 (2) | 0.0419 (8) | 0.825 (3) |
H15A | 0.0963 | 0.1820 | 0.7019 | 0.050* | 0.825 (3) |
H15B | 0.1480 | 0.0975 | 0.6391 | 0.050* | 0.825 (3) |
C16 | 0.2311 (3) | 0.2736 (2) | 0.65204 (15) | 0.0488 (7) | 0.825 (3) |
H16A | 0.2802 | 0.3252 | 0.6993 | 0.059* | 0.825 (3) |
H16B | 0.2959 | 0.2477 | 0.6219 | 0.059* | 0.825 (3) |
C17 | 0.1218 (2) | 0.3504 (2) | 0.59581 (15) | 0.0573 (7) | 0.825 (3) |
H17A | 0.0700 | 0.3930 | 0.6289 | 0.069* | 0.825 (3) |
H17B | 0.0594 | 0.2950 | 0.5563 | 0.069* | 0.825 (3) |
C18 | 0.1776 (4) | 0.4460 (3) | 0.5486 (2) | 0.0762 (10) | 0.825 (3) |
H18D | 0.2266 | 0.4041 | 0.5144 | 0.091* | 0.825 (3) |
H18E | 0.2390 | 0.5015 | 0.5875 | 0.091* | 0.825 (3) |
H18F | 0.1034 | 0.4944 | 0.5135 | 0.091* | 0.825 (3) |
C15' | 0.153 (3) | 0.1345 (16) | 0.6716 (15) | 0.0419 (8) | 0.175 (3) |
H15C | 0.1599 | 0.0826 | 0.6248 | 0.050* | 0.175 (3) |
H15D | 0.0652 | 0.1164 | 0.6822 | 0.050* | 0.175 (3) |
C16' | 0.1585 (14) | 0.2707 (11) | 0.6498 (8) | 0.0488 (7) | 0.175 (3) |
H16C | 0.0710 | 0.2946 | 0.6114 | 0.059* | 0.175 (3) |
H16D | 0.1712 | 0.3206 | 0.7005 | 0.059* | 0.175 (3) |
C17' | 0.2693 (12) | 0.3028 (11) | 0.6109 (8) | 0.0573 (7) | 0.175 (3) |
H17C | 0.2808 | 0.2332 | 0.5753 | 0.069* | 0.175 (3) |
H17D | 0.3548 | 0.3127 | 0.6548 | 0.069* | 0.175 (3) |
C18' | 0.2419 (19) | 0.4208 (15) | 0.5596 (12) | 0.0762 (10) | 0.175 (3) |
H18A | 0.2033 | 0.4836 | 0.5882 | 0.091* | 0.175 (3) |
H18B | 0.1783 | 0.4029 | 0.5060 | 0.091* | 0.175 (3) |
H18C | 0.3263 | 0.4519 | 0.5516 | 0.091* | 0.175 (3) |
H1 | 0.2875 (17) | 0.1574 (17) | 0.7987 (11) | 0.051 (5)* | |
H2 | 0.148 (2) | 0.525 (2) | 1.0022 (14) | 0.074 (7)* | |
O1 | 0.28289 (11) | 0.26494 (11) | 0.87454 (7) | 0.0467 (3) | |
O2 | 0.20270 (13) | 0.47939 (13) | 0.97961 (9) | 0.0567 (4) | |
O3 | −0.10897 (11) | 0.37798 (11) | 0.93017 (8) | 0.0465 (3) | |
O4 | −0.02637 (13) | 0.16806 (14) | 0.81630 (9) | 0.0669 (4) | |
N1 | 0.27710 (14) | 0.10014 (13) | 0.75448 (9) | 0.0394 (4) | |
C1 | 0.17434 (16) | 0.29656 (15) | 0.88734 (10) | 0.0375 (4) | |
C2 | 0.13305 (16) | 0.39029 (15) | 0.93441 (10) | 0.0372 (4) | |
C3 | −0.00209 (16) | 0.34850 (15) | 0.91360 (10) | 0.0370 (4) | |
C4 | 0.03317 (17) | 0.25007 (16) | 0.86125 (11) | 0.0429 (4) | |
C5 | 0.40968 (17) | 0.08575 (15) | 0.73863 (11) | 0.0389 (4) | |
C6 | 0.51639 (18) | 0.15324 (16) | 0.78593 (12) | 0.0464 (4) | |
H6 | 0.5047 | 0.2071 | 0.8278 | 0.056* | |
C7 | 0.64118 (19) | 0.14138 (18) | 0.77141 (13) | 0.0545 (5) | |
H7 | 0.7161 | 0.1866 | 0.8038 | 0.065* | |
C8 | 0.6563 (2) | 0.06392 (18) | 0.71004 (14) | 0.0568 (5) | |
H8 | 0.7420 | 0.0557 | 0.7004 | 0.068* | |
C9 | 0.54816 (19) | −0.00196 (17) | 0.66235 (13) | 0.0528 (5) | |
H9 | 0.5594 | −0.0543 | 0.6196 | 0.063* | |
C10 | 0.42343 (18) | 0.00821 (16) | 0.67682 (11) | 0.0440 (4) | |
H10 | 0.3486 | −0.0375 | 0.6447 | 0.053* | |
C11 | 0.22876 (17) | −0.01779 (15) | 0.78457 (11) | 0.0424 (4) | |
H11A | 0.2135 | −0.0813 | 0.7407 | 0.051* | |
H11B | 0.1418 | −0.0020 | 0.7965 | 0.051* | |
C12 | 0.32913 (18) | −0.06664 (17) | 0.86129 (11) | 0.0467 (5) | |
H12A | 0.3594 | 0.0024 | 0.9006 | 0.056* | |
H12B | 0.4088 | −0.0991 | 0.8465 | 0.056* | |
C13 | 0.2707 (2) | −0.16874 (18) | 0.90269 (12) | 0.0531 (5) | |
H13A | 0.1949 | −0.1348 | 0.9210 | 0.064* | |
H13B | 0.2347 | −0.2353 | 0.8623 | 0.064* | |
C14 | 0.3739 (3) | −0.2230 (2) | 0.97576 (14) | 0.0786 (7) | |
H14A | 0.3313 | −0.2861 | 1.0018 | 0.094* | |
H14B | 0.4109 | −0.1571 | 1.0155 | 0.094* | |
H14C | 0.4466 | −0.2610 | 0.9574 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C15 | 0.037 (2) | 0.0443 (18) | 0.0425 (18) | 0.0049 (13) | 0.0073 (15) | −0.0079 (14) |
C16 | 0.0466 (17) | 0.0463 (12) | 0.0529 (14) | 0.0004 (13) | 0.0130 (15) | −0.0023 (10) |
C17 | 0.0616 (15) | 0.0567 (15) | 0.0521 (15) | 0.0122 (12) | 0.0136 (12) | 0.0023 (12) |
C18 | 0.094 (3) | 0.0636 (19) | 0.0656 (19) | 0.0076 (19) | 0.013 (2) | 0.0120 (14) |
C15' | 0.037 (2) | 0.0443 (18) | 0.0425 (18) | 0.0049 (13) | 0.0073 (15) | −0.0079 (14) |
C16' | 0.0466 (17) | 0.0463 (12) | 0.0529 (14) | 0.0004 (13) | 0.0130 (15) | −0.0023 (10) |
C17' | 0.0616 (15) | 0.0567 (15) | 0.0521 (15) | 0.0122 (12) | 0.0136 (12) | 0.0023 (12) |
C18' | 0.094 (3) | 0.0636 (19) | 0.0656 (19) | 0.0076 (19) | 0.013 (2) | 0.0120 (14) |
O1 | 0.0361 (7) | 0.0524 (8) | 0.0574 (8) | −0.0073 (6) | 0.0225 (6) | −0.0147 (6) |
O2 | 0.0412 (8) | 0.0627 (9) | 0.0724 (10) | −0.0127 (7) | 0.0261 (7) | −0.0309 (7) |
O3 | 0.0341 (7) | 0.0515 (8) | 0.0558 (8) | 0.0015 (5) | 0.0159 (6) | −0.0114 (6) |
O4 | 0.0427 (8) | 0.0726 (10) | 0.0898 (11) | −0.0151 (7) | 0.0260 (7) | −0.0417 (8) |
N1 | 0.0397 (8) | 0.0376 (8) | 0.0434 (9) | 0.0006 (6) | 0.0158 (7) | −0.0051 (7) |
C1 | 0.0357 (9) | 0.0398 (9) | 0.0400 (10) | −0.0018 (7) | 0.0156 (8) | −0.0004 (7) |
C2 | 0.0367 (9) | 0.0398 (9) | 0.0365 (9) | −0.0029 (7) | 0.0125 (7) | −0.0026 (7) |
C3 | 0.0351 (9) | 0.0396 (9) | 0.0376 (9) | 0.0033 (7) | 0.0122 (7) | 0.0019 (7) |
C4 | 0.0365 (10) | 0.0444 (10) | 0.0495 (11) | −0.0026 (8) | 0.0148 (8) | −0.0079 (9) |
C5 | 0.0383 (10) | 0.0370 (9) | 0.0439 (10) | 0.0016 (8) | 0.0155 (8) | 0.0034 (8) |
C6 | 0.0472 (11) | 0.0425 (10) | 0.0502 (11) | −0.0039 (8) | 0.0150 (9) | 0.0019 (8) |
C7 | 0.0425 (11) | 0.0502 (12) | 0.0696 (14) | −0.0068 (9) | 0.0136 (10) | 0.0116 (10) |
C8 | 0.0438 (12) | 0.0527 (12) | 0.0816 (15) | 0.0084 (9) | 0.0304 (11) | 0.0201 (11) |
C9 | 0.0539 (12) | 0.0485 (11) | 0.0639 (13) | 0.0134 (9) | 0.0296 (10) | 0.0074 (9) |
C10 | 0.0427 (10) | 0.0431 (10) | 0.0483 (11) | 0.0046 (8) | 0.0163 (8) | −0.0006 (8) |
C11 | 0.0378 (10) | 0.0411 (10) | 0.0512 (11) | −0.0049 (8) | 0.0173 (8) | −0.0051 (8) |
C12 | 0.0468 (11) | 0.0461 (11) | 0.0493 (11) | −0.0068 (8) | 0.0167 (9) | −0.0018 (8) |
C13 | 0.0624 (13) | 0.0469 (11) | 0.0546 (12) | −0.0112 (9) | 0.0240 (10) | −0.0042 (9) |
C14 | 0.0995 (19) | 0.0695 (15) | 0.0639 (15) | −0.0205 (13) | 0.0182 (13) | 0.0144 (12) |
C15—N1 | 1.484 (4) | N1—C5 | 1.478 (2) |
C15—C16 | 1.525 (4) | N1—C11 | 1.507 (2) |
C15—H15A | 0.9900 | N1—H1 | 0.953 (19) |
C15—H15B | 0.9900 | C1—C2 | 1.425 (2) |
C16—C17 | 1.506 (3) | C1—C4 | 1.490 (2) |
C16—H16A | 0.9900 | C2—C3 | 1.417 (2) |
C16—H16B | 0.9900 | C3—C4 | 1.492 (2) |
C17—C18 | 1.514 (4) | C5—C6 | 1.377 (2) |
C17—H17A | 0.9900 | C5—C10 | 1.377 (2) |
C17—H17B | 0.9900 | C6—C7 | 1.386 (3) |
C18—H18D | 0.9800 | C6—H6 | 0.9500 |
C18—H18E | 0.9800 | C7—C8 | 1.375 (3) |
C18—H18F | 0.9800 | C7—H7 | 0.9500 |
C15'—C16' | 1.520 (16) | C8—C9 | 1.380 (3) |
C15'—N1 | 1.66 (2) | C8—H8 | 0.9500 |
C15'—H15C | 0.9900 | C9—C10 | 1.384 (2) |
C15'—H15D | 0.9900 | C9—H9 | 0.9500 |
C16'—C17' | 1.513 (13) | C10—H10 | 0.9500 |
C16'—H16C | 0.9900 | C11—C12 | 1.513 (2) |
C16'—H16D | 0.9900 | C11—H11A | 0.9900 |
C17'—C18' | 1.521 (14) | C11—H11B | 0.9900 |
C17'—H17C | 0.9900 | C12—C13 | 1.519 (2) |
C17'—H17D | 0.9900 | C12—H12A | 0.9900 |
C18'—H18A | 0.9800 | C12—H12B | 0.9900 |
C18'—H18B | 0.9800 | C13—C14 | 1.508 (3) |
C18'—H18C | 0.9800 | C13—H13A | 0.9900 |
O1—C1 | 1.2492 (19) | C13—H13B | 0.9900 |
O2—C2 | 1.312 (2) | C14—H14A | 0.9800 |
O2—H2 | 0.91 (2) | C14—H14B | 0.9800 |
O3—C3 | 1.2555 (18) | C14—H14C | 0.9800 |
O4—C4 | 1.216 (2) | ||
N1—C15—C16 | 112.7 (3) | C11—N1—H1 | 104.9 (11) |
N1—C15—H15A | 109.0 | C15'—N1—H1 | 114.1 (14) |
C16—C15—H15A | 109.0 | O1—C1—C2 | 135.67 (16) |
N1—C15—H15B | 109.0 | O1—C1—C4 | 135.33 (15) |
C16—C15—H15B | 109.0 | C2—C1—C4 | 88.99 (13) |
H15A—C15—H15B | 107.8 | O2—C2—C3 | 136.17 (15) |
C17—C16—C15 | 112.7 (3) | O2—C2—C1 | 130.13 (15) |
C17—C16—H16A | 109.0 | C3—C2—C1 | 93.70 (13) |
C15—C16—H16A | 109.0 | O3—C3—C2 | 137.20 (16) |
C17—C16—H16B | 109.0 | O3—C3—C4 | 133.60 (15) |
C15—C16—H16B | 109.0 | C2—C3—C4 | 89.19 (13) |
H16A—C16—H16B | 107.8 | O4—C4—C1 | 135.54 (16) |
C16—C17—C18 | 112.2 (2) | O4—C4—C3 | 136.38 (16) |
C16—C17—H17A | 109.2 | C1—C4—C3 | 88.08 (13) |
C18—C17—H17A | 109.2 | C10—C5—C6 | 121.77 (16) |
C16—C17—H17B | 109.2 | C10—C5—N1 | 119.98 (15) |
C18—C17—H17B | 109.2 | C6—C5—N1 | 118.24 (15) |
H17A—C17—H17B | 107.9 | C5—C6—C7 | 118.91 (18) |
C17—C18—H18D | 109.5 | C5—C6—H6 | 120.5 |
C17—C18—H18E | 109.5 | C7—C6—H6 | 120.5 |
H18D—C18—H18E | 109.5 | C8—C7—C6 | 119.85 (19) |
C17—C18—H18F | 109.5 | C8—C7—H7 | 120.1 |
H18D—C18—H18F | 109.5 | C6—C7—H7 | 120.1 |
H18E—C18—H18F | 109.5 | C7—C8—C9 | 120.68 (18) |
C16'—C15'—N1 | 110.3 (13) | C7—C8—H8 | 119.7 |
C16'—C15'—H15C | 109.6 | C9—C8—H8 | 119.7 |
N1—C15'—H15C | 109.6 | C8—C9—C10 | 119.98 (18) |
C16'—C15'—H15D | 109.6 | C8—C9—H9 | 120.0 |
N1—C15'—H15D | 109.6 | C10—C9—H9 | 120.0 |
H15C—C15'—H15D | 108.1 | C5—C10—C9 | 118.81 (18) |
C17'—C16'—C15' | 114.4 (15) | C5—C10—H10 | 120.6 |
C17'—C16'—H16C | 108.7 | C9—C10—H10 | 120.6 |
C15'—C16'—H16C | 108.7 | N1—C11—C12 | 111.78 (14) |
C17'—C16'—H16D | 108.7 | N1—C11—H11A | 109.3 |
C15'—C16'—H16D | 108.7 | C12—C11—H11A | 109.3 |
H16C—C16'—H16D | 107.6 | N1—C11—H11B | 109.3 |
C16'—C17'—C18' | 113.3 (11) | C12—C11—H11B | 109.3 |
C16'—C17'—H17C | 108.9 | H11A—C11—H11B | 107.9 |
C18'—C17'—H17C | 108.9 | C11—C12—C13 | 112.46 (15) |
C16'—C17'—H17D | 108.9 | C11—C12—H12A | 109.1 |
C18'—C17'—H17D | 108.9 | C13—C12—H12A | 109.1 |
H17C—C17'—H17D | 107.7 | C11—C12—H12B | 109.1 |
C17'—C18'—H18A | 109.5 | C13—C12—H12B | 109.1 |
C17'—C18'—H18B | 109.5 | H12A—C12—H12B | 107.8 |
H18A—C18'—H18B | 109.5 | C14—C13—C12 | 112.17 (16) |
C17'—C18'—H18C | 109.5 | C14—C13—H13A | 109.2 |
H18A—C18'—H18C | 109.5 | C12—C13—H13A | 109.2 |
H18B—C18'—H18C | 109.5 | C14—C13—H13B | 109.2 |
C2—O2—H2 | 109.6 (14) | C12—C13—H13B | 109.2 |
C5—N1—C15 | 112.2 (2) | H13A—C13—H13B | 107.9 |
C5—N1—C11 | 112.66 (13) | C13—C14—H14A | 109.5 |
C15—N1—C11 | 113.90 (17) | C13—C14—H14B | 109.5 |
C5—N1—C15' | 114.2 (11) | H14A—C14—H14B | 109.5 |
C11—N1—C15' | 102.8 (6) | C13—C14—H14C | 109.5 |
C5—N1—H1 | 107.7 (11) | H14A—C14—H14C | 109.5 |
C15—N1—H1 | 104.6 (11) | H14B—C14—H14C | 109.5 |
N1—C15—C16—C17 | −165.9 (3) | C2—C3—C4—O4 | −178.1 (2) |
C15—C16—C17—C18 | −166.5 (3) | O3—C3—C4—C1 | −178.62 (19) |
N1—C15'—C16'—C17' | 75 (2) | C2—C3—C4—C1 | 1.40 (13) |
C15'—C16'—C17'—C18' | 156.9 (15) | C15—N1—C5—C6 | 113.9 (2) |
C16—C15—N1—C5 | −47.2 (4) | C11—N1—C5—C6 | −115.94 (17) |
C16—C15—N1—C11 | −176.7 (3) | C15'—N1—C5—C6 | 127.2 (7) |
C16—C15—N1—C15' | −149 (6) | C15—N1—C5—C10 | −64.9 (2) |
C16'—C15'—N1—C5 | −77.4 (19) | C11—N1—C5—C10 | 65.3 (2) |
C16'—C15'—N1—C15 | 6 (4) | C15'—N1—C5—C10 | −51.6 (7) |
C16'—C15'—N1—C11 | 160.2 (15) | C10—C5—C6—C7 | −0.8 (3) |
O1—C1—C2—O2 | 2.3 (3) | N1—C5—C6—C7 | −179.56 (15) |
C4—C1—C2—O2 | −178.97 (19) | C5—C6—C7—C8 | 0.6 (3) |
O1—C1—C2—C3 | −177.3 (2) | C6—C7—C8—C9 | 0.3 (3) |
C4—C1—C2—C3 | 1.47 (14) | C7—C8—C9—C10 | −0.9 (3) |
O2—C2—C3—O3 | −1.0 (4) | C6—C5—C10—C9 | 0.2 (3) |
C1—C2—C3—O3 | 178.6 (2) | N1—C5—C10—C9 | 178.92 (15) |
O2—C2—C3—C4 | 179.0 (2) | C8—C9—C10—C5 | 0.7 (3) |
C1—C2—C3—C4 | −1.47 (14) | C5—N1—C11—C12 | 56.46 (19) |
O1—C1—C4—O4 | −3.1 (4) | C15—N1—C11—C12 | −174.3 (3) |
C2—C1—C4—O4 | 178.1 (2) | C15'—N1—C11—C12 | 179.9 (11) |
O1—C1—C4—C3 | 177.4 (2) | N1—C11—C12—C13 | 167.88 (15) |
C2—C1—C4—C3 | −1.39 (13) | C11—C12—C13—C14 | 176.11 (17) |
O3—C3—C4—O4 | 1.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3i | 0.91 (2) | 1.68 (2) | 2.543 (2) | 157 (2) |
N1—H1···O1 | 0.95 (2) | 1.74 (2) | 2.688 (2) | 172 (2) |
C15—H15A···O4 | 0.99 | 2.60 | 3.469 (5) | 147 |
C9—H9···O1ii | 0.95 | 2.53 | 3.222 (2) | 130 |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x+1, y−1/2, −z+3/2. |
Acknowledgements
The authors acknowledge St. Catherine University, the NSF–MRI award No. 1125975 `MRI Consortium: Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Molecular Structure Facility' and the 3M/Ronald A. Mitsch Endowed Fund in Chemistry at Hamline University.
Funding information
Funding for this research was provided by: National Science Foundation, Division of Chemistryhttps://doi.org/10.13039/100000165 (award No. 1125975).
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chen, G., Sasabe, H., Sasaki, Y., Katagiri, H., Wang, X.-F., Sano, T., Hong, Z., Yang, Y. & Kido, J. (2014). Chem. Mater. 26, 1356–1364. Web of Science CSD CrossRef CAS Google Scholar
Chen, Y., Zhu, Y., Yang, D., Zhao, S., Zhang, L., Yang, L., Wu, J., Huang, Y., Xu, Z. & Lu, Z. (2016). Chem. Eur. J. 22, 14527–14530. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Feron, K., Cave, J., Thameel, M., O'Sullivan, C., Kroon, R., Andersson, M., Zhou, X., Fell, C., Belcher, W., Walker, A. & Dastoor, P. (2016). Appl. Mater. Interfaces, 8, 20928–20937. Web of Science CrossRef CAS Google Scholar
Kaczmarek-Kedziera, A. & Kedziera, D. (2016). Theor. Chem. Acc. 135, Article 214. Google Scholar
Kolev, T., Shivachev, B., Petrova, R., Ivanov, I., Atanasova, S. & Statkova, S. (2007). Acta Cryst. E63, o3353–o3354. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kolev, T., Wortmann, R., Spiteller, M., Sheldrick, W. S. & Heller, M. (2004). Acta Cryst. E60, o956–o957. Web of Science CSD CrossRef IUCr Journals Google Scholar
Korkmaz, U. & Bulut, A. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 130, 376–385. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Modec, B. (2015). J. Mol. Struct. 1099, 54–57. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Saccone, D., Galliano, S., Barbero, N., Quagliotto, P., Viscardi, G. & Barolo, C. (2016). Eur. J. Org. Chem. 2016, 2244–2259. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, W., Guo, S., Hu, C., Fan, J. & Peng, X. (2016). Chem. Rev. 116, 7768–7817. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.