organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-1,4-Bis(2-chloro­phen­yl)-2-(methyl­sulfan­yl)but-2-ene-1,4-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: devarajegowda@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 December 2016; accepted 23 December 2016; online 13 January 2017)

In the title compound, C17H12Cl2O2S, the benzene rings are inclined to one another by 84.59 (16)°. The enaminone group is present in a synclinal conformation with respect to the chloro­benzene moiety. The configuration of the C=C bond is Z. There is a short intra­molecular C—H⋯O contact present forming an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming layers lying parallel to the (10-1) plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The 2-methyl­thio-1,4-ene-dione unit is an important building block in synthetic chemistry. The Paal–Knorr selective reduction of double bonds, condensation, and domino reactions of 2-methyl­thio-1,4-en-diones leads to the formation of biologically and medicinally important heterocyclic compounds such as furan (Yin et al., 2008[Yin, G., Wang, Z., Chen, A., Gao, M., Wu, A. & Pan, Y. (2008). J. Org. Chem. 73, 3377-3383.]), pyridazine (Wu et al., 2012[Wu, L., Yang, Y., Gao, M., Zhang, D., Shu, W., Zhu, Y. & Wu, A. (2012). Synlett, 23, 2137-2141.]), indole-furan (Yang et al., 2011[Yang, Y., Gao, M., Wu, L.-M., Deng, C., Zhang, D.-X., Gao, Y., Zhu, Y.-P. & Wu, A.-X. (2011). Tetrahedron, 67, 5142-5149.]), 1,2-di­hydro­quinoxaline (Zhang et al., 2013[Zhang, D., Yang, Y., Gao, M., Shu, W., Wu, L., Zhu, Y. & Wu, A. (2013). Tetrahedron, 69, 1849-1856.]) and beta-enamino­nes (Vinayaka et al., 2016[Vinayaka, A. C., Swaroop, T. R., Chikkade, P. K., Rangappa, K. S. & Sadashiva, M. P. (2016). RSC Adv. 6, 11528-11535.]). The synthesis of these inter­mediates involves the self-sorting tandem reactions of ar­yl/heteroaryl methyl ketones, which form a mixture of E/Z products in different ratios. Due to the importance of 1,4-ene-dione derivatives and as part of our ongoing studies in this area, we have synthesized the title compound and report herein on its crystal structure.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The benzene rings are inclined to one another by 84.59 (16)°. The enaminone group is present in a syn-clinal conformation with respect to the chloro­benzene moiety. The configuration about the C13=C15 bond is Z. There is a short intra­molecular C—H⋯O contact present forming an S(6) ring motif (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O4 0.96 2.39 3.016 (5) 122
C7—H7⋯O5i 0.93 2.50 3.302 (4) 145
C18—H18⋯O5ii 0.93 2.54 3.444 (3) 163
C21—H21⋯O4iii 0.93 2.47 3.393 (4) 170
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) x, y+1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds (Table 1[link]), forming layers lying parallel to plane (10[\overline{1}]), as shown in Fig. 2[link].

[Figure 2]
Figure 2
A view normal to plane (10[\overline{1}]) of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, only the H atoms involved in the C—H⋯O hydrogen bonds have been included.

Synthesis and crystallization

A solution of 1-(2-chloro­phen­yl)ethanone (6.4 mmol), iodine (16.1 mmol) and copper oxide (16.1 mmol) in dimethyl sulfoxide (15 ml) was heated at 333 K for 5 h. After completion of the reaction (monitored by TLC), the reaction mixture was filtered. The obtained organic layer was washed first with sodium thio­sulfate solution and then diluted with ethyl acetate and washed with sodium hydroxide and water. The solvent was dried over anhydrous sodium sulfate and removed under reduced pressure. The crude product was purified through silica gel column chromatography. Yellow prismatic crystals of the title compound were obtained from an ethyl acetate–hexane solution by slow evaporation at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H12Cl2O2S
Mr 351.23
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 19.3473 (8), 9.9623 (4), 18.5845 (7)
β (°) 116.194 (2)
V3) 3214.2 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 4.88
Crystal size (mm) 0.24 × 0.20 × 0.12
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.770, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13526, 2651, 2512
Rint 0.058
(sin θ/λ)max−1) 0.584
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.141, 1.08
No. of reflections 2651
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.35
Computer programs: SMART and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(Z)-1,4-Bis(2-chlorophenyl)-2-(methylsulfanyl)but-2-ene-1,4-dione top
Crystal data top
C17H12Cl2O2SDx = 1.452 Mg m3
Mr = 351.23Melting point: 378 K
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 19.3473 (8) ÅCell parameters from 2651 reflections
b = 9.9623 (4) Åθ = 5.1–64.3°
c = 18.5845 (7) ŵ = 4.88 mm1
β = 116.194 (2)°T = 296 K
V = 3214.2 (2) Å3Prism, colourless
Z = 80.24 × 0.20 × 0.12 mm
F(000) = 1440
Data collection top
Bruker SMART CCD area-detector
diffractometer
2651 independent reflections
Radiation source: fine-focus sealed tube2512 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω and φ scansθmax = 64.3°, θmin = 5.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1922
Tmin = 0.770, Tmax = 1.000k = 1111
13526 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0864P)2 + 3.2646P]
where P = (Fo2 + 2Fc2)/3
2651 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42143 (6)0.48209 (8)0.30724 (5)0.0691 (3)
Cl20.35016 (4)0.17073 (8)0.40050 (4)0.0568 (3)
S30.29130 (4)0.01014 (6)0.19937 (4)0.0438 (2)
O40.46266 (12)0.10000 (19)0.31873 (12)0.0561 (5)
O50.28248 (10)0.21333 (17)0.10972 (10)0.0443 (5)
C60.5719 (2)0.2545 (3)0.52831 (17)0.0598 (8)
H60.60140.31010.57110.072*
C70.60755 (17)0.1725 (3)0.49585 (17)0.0551 (8)
H70.66100.17060.51760.066*
C80.56390 (15)0.0925 (3)0.43058 (15)0.0424 (6)
H80.58830.03660.40880.051*
C90.48418 (14)0.0949 (2)0.39747 (13)0.0342 (5)
C100.44942 (15)0.1751 (2)0.43308 (14)0.0402 (6)
C110.49297 (19)0.2556 (3)0.49832 (16)0.0546 (7)
H110.46910.30960.52150.066*
C120.44141 (14)0.0122 (2)0.32400 (14)0.0345 (5)
C130.37629 (13)0.0776 (2)0.25295 (12)0.0318 (5)
C140.29307 (19)0.1364 (3)0.26996 (19)0.0558 (7)
H14A0.24770.19110.24570.084*
H14B0.33800.19160.28490.084*
H14C0.29450.09360.31690.084*
C150.39188 (13)0.1990 (2)0.23167 (13)0.0324 (5)
H150.43910.23850.26390.039*
C160.33863 (13)0.2718 (2)0.16073 (13)0.0317 (5)
C170.35056 (14)0.4165 (2)0.14718 (14)0.0364 (5)
C180.32058 (16)0.4572 (3)0.06691 (16)0.0447 (6)
H180.29580.39440.02660.054*
C190.3268 (2)0.5872 (3)0.0463 (2)0.0627 (8)
H190.30590.61130.00750.075*
C200.3635 (2)0.6815 (3)0.1040 (2)0.0684 (9)
H200.36800.76920.08940.082*
C210.3937 (2)0.6466 (3)0.1835 (2)0.0623 (9)
H210.41870.71070.22290.075*
C220.38701 (17)0.5146 (3)0.20539 (17)0.0448 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0952 (7)0.0602 (5)0.0431 (4)0.0172 (4)0.0225 (4)0.0233 (3)
Cl20.0457 (4)0.0747 (5)0.0494 (4)0.0085 (3)0.0205 (3)0.0109 (3)
S30.0409 (4)0.0427 (4)0.0353 (4)0.0140 (2)0.0055 (3)0.0027 (2)
O40.0600 (12)0.0403 (10)0.0521 (11)0.0109 (9)0.0103 (9)0.0100 (8)
O50.0434 (10)0.0386 (9)0.0335 (9)0.0088 (7)0.0011 (8)0.0009 (7)
C60.066 (2)0.0596 (18)0.0335 (14)0.0175 (15)0.0037 (13)0.0097 (13)
C70.0412 (15)0.0619 (18)0.0408 (15)0.0125 (13)0.0015 (12)0.0058 (13)
C80.0375 (13)0.0458 (14)0.0360 (13)0.0008 (11)0.0090 (11)0.0063 (11)
C90.0359 (12)0.0335 (11)0.0255 (11)0.0010 (9)0.0066 (9)0.0037 (9)
C100.0443 (14)0.0416 (13)0.0286 (12)0.0010 (11)0.0105 (10)0.0011 (10)
C110.071 (2)0.0534 (16)0.0335 (14)0.0029 (14)0.0180 (14)0.0105 (11)
C120.0358 (12)0.0333 (12)0.0318 (12)0.0001 (9)0.0126 (10)0.0022 (9)
C130.0331 (11)0.0350 (12)0.0240 (10)0.0022 (9)0.0096 (9)0.0070 (9)
C140.0579 (17)0.0525 (16)0.0538 (17)0.0186 (13)0.0217 (14)0.0023 (13)
C150.0297 (11)0.0356 (11)0.0265 (11)0.0041 (9)0.0074 (9)0.0055 (9)
C160.0335 (12)0.0314 (11)0.0282 (11)0.0026 (9)0.0118 (9)0.0049 (9)
C170.0382 (12)0.0316 (12)0.0401 (13)0.0029 (10)0.0177 (11)0.0040 (10)
C180.0524 (15)0.0383 (12)0.0405 (13)0.0026 (11)0.0180 (12)0.0021 (11)
C190.084 (2)0.0452 (16)0.0621 (19)0.0030 (15)0.0346 (17)0.0136 (14)
C200.094 (3)0.0368 (15)0.082 (2)0.0051 (15)0.047 (2)0.0071 (15)
C210.075 (2)0.0358 (14)0.083 (2)0.0157 (14)0.0408 (19)0.0232 (15)
C220.0510 (15)0.0384 (13)0.0460 (16)0.0079 (11)0.0222 (13)0.0116 (11)
Geometric parameters (Å, º) top
Cl1—C221.737 (3)C13—C151.348 (3)
Cl2—C101.741 (3)C14—H14A0.9600
S3—C131.736 (2)C14—H14B0.9600
S3—C141.807 (3)C14—H14C0.9600
O4—C121.210 (3)C15—C161.458 (3)
O5—C161.228 (3)C15—H150.9300
C6—C71.368 (5)C16—C171.499 (3)
C6—C111.376 (5)C17—C221.396 (3)
C6—H60.9300C17—C181.401 (4)
C7—C81.384 (4)C18—C191.371 (4)
C7—H70.9300C18—H180.9300
C8—C91.386 (4)C19—C201.365 (5)
C8—H80.9300C19—H190.9300
C9—C101.386 (4)C20—C211.373 (5)
C9—C121.493 (3)C20—H200.9300
C10—C111.386 (4)C21—C221.399 (4)
C11—H110.9300C21—H210.9300
C12—C131.512 (3)
C13—S3—C14102.97 (12)S3—C14—H14C109.5
C7—C6—C11120.7 (3)H14A—C14—H14C109.5
C7—C6—H6119.6H14B—C14—H14C109.5
C11—C6—H6119.6C13—C15—C16123.5 (2)
C6—C7—C8119.9 (3)C13—C15—H15118.3
C6—C7—H7120.0C16—C15—H15118.3
C8—C7—H7120.0O5—C16—C15119.6 (2)
C7—C8—C9120.5 (3)O5—C16—C17118.4 (2)
C7—C8—H8119.7C15—C16—C17122.02 (19)
C9—C8—H8119.7C22—C17—C18116.9 (2)
C8—C9—C10118.5 (2)C22—C17—C16127.3 (2)
C8—C9—C12117.1 (2)C18—C17—C16115.8 (2)
C10—C9—C12124.4 (2)C19—C18—C17121.7 (3)
C11—C10—C9121.0 (3)C19—C18—H18119.2
C11—C10—Cl2118.1 (2)C17—C18—H18119.2
C9—C10—Cl2120.83 (18)C20—C19—C18120.6 (3)
C6—C11—C10119.2 (3)C20—C19—H19119.7
C6—C11—H11120.4C18—C19—H19119.7
C10—C11—H11120.4C19—C20—C21119.9 (3)
O4—C12—C9120.8 (2)C19—C20—H20120.1
O4—C12—C13120.6 (2)C21—C20—H20120.1
C9—C12—C13118.24 (18)C20—C21—C22120.0 (3)
C15—C13—C12115.8 (2)C20—C21—H21120.0
C15—C13—S3124.17 (17)C22—C21—H21120.0
C12—C13—S3119.83 (17)C17—C22—C21120.9 (3)
S3—C14—H14A109.5C17—C22—Cl1122.2 (2)
S3—C14—H14B109.5C21—C22—Cl1116.8 (2)
H14A—C14—H14B109.5
C11—C6—C7—C82.0 (5)C14—S3—C13—C1221.4 (2)
C6—C7—C8—C90.2 (4)C12—C13—C15—C16174.5 (2)
C7—C8—C9—C102.5 (4)S3—C13—C15—C160.2 (3)
C7—C8—C9—C12176.1 (2)C13—C15—C16—O512.9 (4)
C8—C9—C10—C112.6 (4)C13—C15—C16—C17167.8 (2)
C12—C9—C10—C11175.9 (2)O5—C16—C17—C22151.3 (3)
C8—C9—C10—Cl2173.85 (18)C15—C16—C17—C2229.4 (4)
C12—C9—C10—Cl27.6 (3)O5—C16—C17—C1827.7 (3)
C7—C6—C11—C101.8 (5)C15—C16—C17—C18151.6 (2)
C9—C10—C11—C60.5 (4)C22—C17—C18—C190.2 (4)
Cl2—C10—C11—C6176.0 (2)C16—C17—C18—C19179.3 (3)
C8—C9—C12—O442.4 (3)C17—C18—C19—C200.6 (5)
C10—C9—C12—O4139.1 (3)C18—C19—C20—C210.7 (6)
C8—C9—C12—C13131.0 (2)C19—C20—C21—C220.0 (6)
C10—C9—C12—C1347.5 (3)C18—C17—C22—C210.8 (4)
O4—C12—C13—C15126.1 (3)C16—C17—C22—C21179.8 (3)
C9—C12—C13—C1547.3 (3)C18—C17—C22—Cl1175.7 (2)
O4—C12—C13—S348.5 (3)C16—C17—C22—Cl13.3 (4)
C9—C12—C13—S3138.11 (19)C20—C21—C22—C170.8 (5)
C14—S3—C13—C15164.5 (2)C20—C21—C22—Cl1176.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O40.962.393.016 (5)122
C7—H7···O5i0.932.503.302 (4)145
C18—H18···O5ii0.932.543.444 (3)163
C21—H21···O4iii0.932.473.393 (4)170
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y+1, z.
 

Acknowledgements

The authors thank the Sophisticated Instrumental Centre, of the University of Mysore, Mysuru, for the CCD X-ray facilities.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVinayaka, A. C., Swaroop, T. R., Chikkade, P. K., Rangappa, K. S. & Sadashiva, M. P. (2016). RSC Adv. 6, 11528–11535.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, L., Yang, Y., Gao, M., Zhang, D., Shu, W., Zhu, Y. & Wu, A. (2012). Synlett, 23, 2137–2141.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Y., Gao, M., Wu, L.-M., Deng, C., Zhang, D.-X., Gao, Y., Zhu, Y.-P. & Wu, A.-X. (2011). Tetrahedron, 67, 5142–5149.  Web of Science CrossRef CAS Google Scholar
First citationYin, G., Wang, Z., Chen, A., Gao, M., Wu, A. & Pan, Y. (2008). J. Org. Chem. 73, 3377–3383.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, D., Yang, Y., Gao, M., Shu, W., Wu, L., Zhu, Y. & Wu, A. (2013). Tetrahedron, 69, 1849–1856.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds