organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(4-Amino-3-ethyl-5-sulfanyl­­idene-4,5-di­hydro-1H-1,2,4-triazol-1-yl)-1,3-di­phenyl­propan-1-one

CROSSMARK_Color_square_no_text.svg

aCollege of Chemical Engineering, Huanggang Normal University, Huanggang 438000, People's Republic of China
*Correspondence e-mail: qqhrchemistry@aliyun.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 10 December 2016; accepted 16 December 2016; online 6 January 2017)

In the title compound, C19H20N4OS, the 1,2,4-triazole ring forms dihedral angles of 58.64 (9) and 87.68 (9)° with the phenyl rings, which are inclined to one another by 43.30 (6)°. In the crystal, mol­ecules are linked by N—H⋯O, N—H⋯S and C—H⋯S hydrogen bonds, forming chains propagating along the c-axis direction. Neighbouring chains are linked by three C—H⋯π inter­actions, forming layers parallel to the bc plane. Finally, the layers are linked by a fourth C—H⋯π inter­action, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The synthesis and crystal structures of some Mannich base derivatives have been reported (Wang, et al., 2011[Wang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269.]; Shams, et al., 2011[Shams, H. Z., Mohareb, R. M., Helal, M. H. & Mahmoud, A. (2011). Molecules, 16, 52-73.]). Now, we present here the crystal structure of the title 1,2,4-triazole derivative.

In the title compound, Fig. 1[link], the 1,2,4-triazole ring is almost planar, with an r.m.s. deviation of 0.0055 Å and a maximum deviation of 0.0087 (2) Å for atom C17. Atom C16 of the 1,2,4-triazole ring shows a distorted Csp2 hybridization state with bond angles of 103.06 (13)° for N1—C16—N3, 129.69 (12)° for N1—C16—S1, and 127.19 (12)° for N3—C16—S1. These values are similar to those reported for other triazole derivatives (Zhao et al., 2010[Zhao, B., Liu, Z., Gao, Y., Song, B. & Deng, Q. (2010). Acta Cryst. E66, o2814.]; Gao et al., 2011[Gao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794.]). The other bond lengths and angles are comparable with those reported for related 1,2,4-triazole-5(4H)-thione derivatives (Al-Tamimi et al., 2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.]; Fun et al., 2009[Fun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o495-o496.]; Tan et al., 2010[Tan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o2224.]). The C10–C15 phenyl ring is normal to the triazole ring, making a dihedral angle of 87.68 (9)°, while the second phenyl ring (C1–C6) is inclined to the triazole ring by 58.64 (9)°. The phenyl rings are inclined to one another by 43.30 (6)°.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by N—H⋯O, N—H⋯S and C—H⋯S hydrogen bonds, forming chains propagating along the c-axis direction (Table 1[link] and Fig. 2[link]). Neighbouring chains are linked by three C—H⋯π inter­actions, forming layers parallel to the bc plane, which are in turn linked by a fourth C—H⋯π inter­action (C2—H2⋯Cg1iv) forming a three-dimensional network (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the N1/N2/N3/C17/C18, C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1i 0.92 (2) 2.39 (2) 3.138 (2) 139 (2)
N4—H4B⋯S1i 0.91 (2) 2.55 (2) 3.458 (2) 172 (2)
C19—H19C⋯S1i 0.98 2.87 3.743 (2) 149
C12—H12⋯Cg2ii 0.95 2.97 3.711 (2) 136
C18—H18ACg3ii 0.99 2.75 3.7275 (18) 170
C19—H19BCg2iii 0.98 2.75 3.5032 (19) 134
C2—H2⋯Cg1iv 0.95 2.99 3.924 (2) 168
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) x, y, z+1; (iv) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, only the H atoms involved in the hydrogen bonds have been included.
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines and the C—H⋯π inter­actions linking the layers are shown as black dashed arrows (see Table 1[link]). For clarity, only the H atoms involved in the various inter­molecular inter­actions have been included.

Synthesis and crystallization

Benzaldehyde (2.0 mmol) and 3-(4-amino-5-thioxo-3-ethyl-4,5-di­hydro-1H-1,2,4-triazol-1-yl)-3-(4-meth­oxy­phen­yl)-1-phenyl­propan-1-one (2.0 mmol) were refluxed in ethanol. The reaction progress was monitored by TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as a colourless solid in 85% yield. Crystals of the title compound suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloro­form-ethanol (1:1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H20N4OS
Mr 352.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 113
a, b, c (Å) 10.4024 (15), 17.797 (2), 10.2829 (14)
β (°) 112.908 (7)
V3) 1753.5 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.20 × 0.18 × 0.14
 
Data collection
Diffractometer Rigaku Saturn CCD area detector
Absorption correction Multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.961, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 18273, 4199, 2965
Rint 0.061
(sin θ/λ)max−1) 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.099, 0.97
No. of reflections 4199
No. of parameters 233
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.33
Computer programs: CrystalClear and CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

3-(4-Amino-3-ethyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol-1-yl)-1,3-diphenylpropan-1-one top
Crystal data top
C19H20N4OSF(000) = 744
Mr = 352.45Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6033 reflections
a = 10.4024 (15) Åθ = 2.1–28.0°
b = 17.797 (2) ŵ = 0.20 mm1
c = 10.2829 (14) ÅT = 113 K
β = 112.908 (7)°Prism, colorless
V = 1753.5 (4) Å30.20 × 0.18 × 0.14 mm
Z = 4
Data collection top
Rigaku Saturn CCD area detector
diffractometer
4199 independent reflections
Radiation source: rotating anode2965 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.061
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 2.1°
φ and ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2323
Tmin = 0.961, Tmax = 0.973l = 1313
18273 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0439P)2]
where P = (Fo2 + 2Fc2)/3
4199 reflections(Δ/σ)max = 0.002
233 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12424 (4)0.20783 (2)0.57027 (4)0.02353 (13)
O10.29173 (11)0.38597 (6)0.39457 (12)0.0258 (3)
N10.09813 (13)0.35970 (7)0.53152 (13)0.0191 (3)
N20.14589 (13)0.42626 (7)0.60247 (14)0.0215 (3)
N30.22893 (13)0.32917 (7)0.74060 (13)0.0178 (3)
N40.31459 (14)0.28805 (8)0.85958 (15)0.0225 (3)
H4A0.3163 (17)0.2402 (11)0.8276 (19)0.034*
H4B0.2634 (19)0.2836 (10)0.914 (2)0.034*
C10.39700 (16)0.51862 (10)0.33197 (17)0.0236 (4)
H10.46130.47980.37830.028*
C20.44514 (17)0.58554 (10)0.30018 (18)0.0274 (4)
H20.54260.59310.32770.033*
C30.35281 (18)0.64159 (10)0.22870 (19)0.0300 (4)
H30.38650.68730.20580.036*
C40.21096 (18)0.63089 (10)0.19061 (19)0.0293 (4)
H40.14700.66900.14040.035*
C50.16246 (17)0.56481 (9)0.22558 (18)0.0243 (4)
H50.06520.55830.20100.029*
C60.25453 (15)0.50757 (9)0.29653 (16)0.0203 (4)
C70.20880 (16)0.43628 (9)0.33978 (16)0.0207 (4)
C80.05603 (16)0.42832 (9)0.31349 (17)0.0212 (4)
H8A0.00120.42750.21030.025*
H8B0.02670.47310.35220.025*
C90.02112 (16)0.35844 (9)0.37787 (16)0.0206 (4)
H90.05390.31390.34010.025*
C100.13554 (16)0.35072 (9)0.33486 (17)0.0196 (4)
C110.19972 (17)0.36120 (9)0.42884 (18)0.0248 (4)
H110.14470.37150.52530.030*
C120.34399 (17)0.35674 (10)0.3831 (2)0.0289 (4)
H120.38710.36340.44850.035*
C130.42453 (17)0.34270 (10)0.2433 (2)0.0290 (4)
H130.52330.34110.21160.035*
C140.36106 (17)0.33084 (10)0.14891 (19)0.0275 (4)
H140.41620.32020.05270.033*
C150.21747 (16)0.33454 (9)0.19507 (18)0.0247 (4)
H150.17430.32590.13020.030*
C160.14737 (15)0.29898 (9)0.61269 (17)0.0182 (4)
C170.22746 (16)0.40574 (9)0.72990 (16)0.0188 (4)
C180.31117 (17)0.45732 (9)0.84495 (17)0.0237 (4)
H18A0.31140.50750.80360.028*
H18B0.40880.43910.88460.028*
C190.26191 (17)0.46595 (10)0.96465 (17)0.0251 (4)
H19A0.16540.48410.92720.038*
H19B0.32180.50211.03360.038*
H19C0.26660.41721.01070.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0290 (2)0.0178 (2)0.0220 (2)0.00271 (18)0.00791 (19)0.00223 (17)
O10.0233 (6)0.0228 (7)0.0258 (7)0.0049 (5)0.0036 (5)0.0002 (5)
N10.0200 (7)0.0175 (7)0.0163 (7)0.0003 (6)0.0033 (6)0.0006 (6)
N20.0261 (8)0.0174 (8)0.0194 (7)0.0013 (6)0.0071 (6)0.0029 (6)
N30.0174 (7)0.0180 (7)0.0151 (7)0.0009 (6)0.0033 (6)0.0003 (6)
N40.0225 (8)0.0219 (8)0.0180 (8)0.0026 (6)0.0024 (6)0.0023 (6)
C10.0221 (8)0.0313 (10)0.0166 (8)0.0037 (7)0.0067 (7)0.0026 (7)
C20.0227 (9)0.0377 (11)0.0225 (9)0.0058 (8)0.0095 (8)0.0080 (8)
C30.0379 (11)0.0257 (10)0.0296 (10)0.0080 (8)0.0164 (9)0.0049 (8)
C40.0342 (10)0.0232 (10)0.0287 (10)0.0038 (8)0.0102 (9)0.0026 (8)
C50.0214 (9)0.0264 (10)0.0245 (9)0.0004 (7)0.0082 (8)0.0015 (7)
C60.0212 (8)0.0227 (9)0.0160 (8)0.0009 (7)0.0060 (7)0.0031 (7)
C70.0229 (9)0.0235 (10)0.0138 (8)0.0007 (7)0.0050 (7)0.0050 (7)
C80.0205 (8)0.0215 (9)0.0190 (8)0.0025 (7)0.0050 (7)0.0010 (7)
C90.0224 (8)0.0225 (9)0.0138 (8)0.0023 (7)0.0034 (7)0.0008 (7)
C100.0215 (8)0.0167 (9)0.0190 (8)0.0011 (7)0.0059 (7)0.0015 (7)
C110.0273 (9)0.0249 (10)0.0213 (9)0.0024 (7)0.0086 (8)0.0029 (7)
C120.0299 (10)0.0260 (10)0.0342 (11)0.0054 (8)0.0163 (9)0.0004 (8)
C130.0208 (9)0.0238 (10)0.0389 (11)0.0002 (7)0.0080 (9)0.0048 (8)
C140.0263 (9)0.0250 (10)0.0258 (10)0.0048 (8)0.0043 (8)0.0012 (8)
C150.0270 (9)0.0241 (10)0.0224 (9)0.0021 (7)0.0090 (8)0.0002 (7)
C160.0152 (8)0.0207 (9)0.0179 (8)0.0002 (6)0.0055 (7)0.0005 (7)
C170.0200 (8)0.0192 (9)0.0175 (8)0.0012 (7)0.0076 (7)0.0008 (7)
C180.0269 (9)0.0208 (9)0.0218 (9)0.0046 (7)0.0076 (8)0.0039 (7)
C190.0274 (9)0.0254 (10)0.0196 (9)0.0017 (7)0.0059 (8)0.0042 (7)
Geometric parameters (Å, º) top
S1—C161.6727 (16)C8—C91.518 (2)
O1—C71.2185 (18)C8—H8A0.9900
N1—C161.3394 (19)C8—H8B0.9900
N1—N21.3784 (17)C9—C101.520 (2)
N1—C91.4674 (19)C9—H91.0000
N2—C171.3057 (19)C10—C111.385 (2)
N3—C171.367 (2)C10—C151.386 (2)
N3—C161.3674 (19)C11—C121.389 (2)
N3—N41.4063 (18)C11—H110.9500
N4—H4A0.916 (19)C12—C131.376 (2)
N4—H4B0.91 (2)C12—H120.9500
C1—C21.380 (2)C13—C141.386 (2)
C1—C61.396 (2)C13—H130.9500
C1—H10.9500C14—C151.382 (2)
C2—C31.381 (2)C14—H140.9500
C2—H20.9500C15—H150.9500
C3—C41.385 (2)C17—C181.483 (2)
C3—H30.9500C18—C191.514 (2)
C4—C51.381 (2)C18—H18A0.9900
C4—H40.9500C18—H18B0.9900
C5—C61.394 (2)C19—H19A0.9800
C5—H50.9500C19—H19B0.9800
C6—C71.483 (2)C19—H19C0.9800
C7—C81.511 (2)
C16—N1—N2113.07 (12)N1—C9—H9107.7
C16—N1—C9125.08 (13)C8—C9—H9107.7
N2—N1—C9121.09 (12)C10—C9—H9107.7
C17—N2—N1104.50 (13)C11—C10—C15118.87 (15)
C17—N3—C16109.34 (13)C11—C10—C9122.59 (14)
C17—N3—N4124.91 (13)C15—C10—C9118.52 (14)
C16—N3—N4125.31 (13)C10—C11—C12120.46 (16)
N3—N4—H4A105.5 (11)C10—C11—H11119.8
N3—N4—H4B104.8 (11)C12—C11—H11119.8
H4A—N4—H4B103.7 (15)C13—C12—C11120.14 (17)
C2—C1—C6120.42 (15)C13—C12—H12119.9
C2—C1—H1119.8C11—C12—H12119.9
C6—C1—H1119.8C12—C13—C14119.80 (15)
C1—C2—C3120.54 (16)C12—C13—H13120.1
C1—C2—H2119.7C14—C13—H13120.1
C3—C2—H2119.7C15—C14—C13119.88 (16)
C2—C3—C4119.66 (17)C15—C14—H14120.1
C2—C3—H3120.2C13—C14—H14120.1
C4—C3—H3120.2C14—C15—C10120.81 (16)
C5—C4—C3120.03 (16)C14—C15—H15119.6
C5—C4—H4120.0C10—C15—H15119.6
C3—C4—H4120.0N1—C16—N3103.06 (13)
C4—C5—C6120.82 (16)N1—C16—S1129.69 (12)
C4—C5—H5119.6N3—C16—S1127.19 (12)
C6—C5—H5119.6N2—C17—N3110.01 (13)
C5—C6—C1118.49 (15)N2—C17—C18125.30 (15)
C5—C6—C7123.16 (14)N3—C17—C18124.64 (14)
C1—C6—C7118.33 (14)C17—C18—C19115.59 (14)
O1—C7—C6121.02 (15)C17—C18—H18A108.4
O1—C7—C8121.32 (15)C19—C18—H18A108.4
C6—C7—C8117.67 (13)C17—C18—H18B108.4
C7—C8—C9114.34 (13)C19—C18—H18B108.4
C7—C8—H8A108.7H18A—C18—H18B107.4
C9—C8—H8A108.7C18—C19—H19A109.5
C7—C8—H8B108.7C18—C19—H19B109.5
C9—C8—H8B108.7H19A—C19—H19B109.5
H8A—C8—H8B107.6C18—C19—H19C109.5
N1—C9—C8109.51 (13)H19A—C19—H19C109.5
N1—C9—C10112.89 (13)H19B—C19—H19C109.5
C8—C9—C10111.02 (12)
C16—N1—N2—C170.60 (18)C8—C9—C10—C1568.66 (19)
C9—N1—N2—C17169.86 (13)C15—C10—C11—C121.0 (2)
C6—C1—C2—C32.2 (3)C9—C10—C11—C12177.20 (16)
C1—C2—C3—C41.0 (3)C10—C11—C12—C130.8 (3)
C2—C3—C4—C50.8 (3)C11—C12—C13—C141.9 (3)
C3—C4—C5—C61.4 (3)C12—C13—C14—C151.2 (3)
C4—C5—C6—C10.2 (2)C13—C14—C15—C100.6 (3)
C4—C5—C6—C7178.47 (16)C11—C10—C15—C141.7 (2)
C2—C1—C6—C51.5 (2)C9—C10—C15—C14176.58 (15)
C2—C1—C6—C7176.78 (15)N2—N1—C16—N30.44 (17)
C5—C6—C7—O1175.84 (15)C9—N1—C16—N3170.45 (13)
C1—C6—C7—O15.9 (2)N2—N1—C16—S1176.68 (12)
C5—C6—C7—C84.1 (2)C9—N1—C16—S16.7 (2)
C1—C6—C7—C8174.09 (14)C17—N3—C16—N11.28 (17)
O1—C7—C8—C97.7 (2)N4—N3—C16—N1173.98 (14)
C6—C7—C8—C9172.31 (14)C17—N3—C16—S1175.93 (12)
C16—N1—C9—C8146.40 (15)N4—N3—C16—S13.2 (2)
N2—N1—C9—C822.87 (19)N1—N2—C17—N31.40 (17)
C16—N1—C9—C1089.36 (18)N1—N2—C17—C18176.23 (15)
N2—N1—C9—C10101.38 (16)C16—N3—C17—N21.76 (18)
C7—C8—C9—N160.17 (17)N4—N3—C17—N2174.50 (14)
C7—C8—C9—C10174.50 (13)C16—N3—C17—C18175.88 (15)
N1—C9—C10—C1113.9 (2)N4—N3—C17—C183.1 (2)
C8—C9—C10—C11109.55 (17)N2—C17—C18—C19109.40 (19)
N1—C9—C10—C15167.92 (14)N3—C17—C18—C1973.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N1/N2/N3/C17/C18, C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.92 (2)2.39 (2)3.138 (2)139 (2)
N4—H4B···S1i0.91 (2)2.55 (2)3.458 (2)172 (2)
C19—H19C···S1i0.982.873.743 (2)149
C12—H12···Cg2ii0.952.973.711 (2)136
C18—H18A···Cg3ii0.992.753.7275 (18)170
C19—H19B···Cg2iii0.982.753.5032 (19)134
C2—H2···Cg1iv0.952.993.924 (2)168
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z+1.
 

References

First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o495–o496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShams, H. Z., Mohareb, R. M., Helal, M. H. & Mahmoud, A. (2011). Molecules, 16, 52–73.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o2224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, B., Liu, Z., Gao, Y., Song, B. & Deng, Q. (2010). Acta Cryst. E66, o2814.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds