organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Cyclo­hexyl-5-(2-hy­dr­oxy­benzo­yl)-3-nitro­pyridin-2(1H)-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 602 020, India
*Correspondence e-mail: ksakthimurugesan2492@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 28 November 2016; accepted 3 January 2017; online 13 January 2017)

In the title compound, C18H18N2O5, the cyclo­hexane ring adopts a chair conformation, and its mean plane is almost normal to the central pyridin-2-one ring with a dihedral angle of 87.94 (8)°. The latter ring is inclined to the 2-hy­droxy­benzoyl ring by 50.92 (8)°. There is an intra­molecular O—H⋯O hydrogen bond in this unit forming an S(6) ring motif. The NO2 group is disordered over two orientations of equal occupancy. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming chains propagating along [001]. Inversion-related chains are linked by C—H⋯π inter­actions, forming columns along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title nitropyridine compound is widely used in the synthesis of heterocyclic drugs and cytokine inhibitors (Hu et al., 2011[Hu, Y., Jin, Y. Z., Xiong, Y. P. & Li, Z. C. (2011). Sci. Technol. Eng. 11, 1841-1843.]). Studies of pyridine and pyrimidine derivatives, related to the title compound, are also of inter­est owing to their properties, such as fluorescence (Kawai et al. 2001[Kawai, M., Lee, M. J., Evans, K. O. & Nordlund, T. M. (2001). J. Fluoresc. 11, 23-32.]; Abdullah, 2005[Abdullah, Z. (2005). Int. J. Chem. Sci. 3, 9-15.]).

In the title compound, Fig. 1[link], the cyclo­hexane ring (C13–C18) adopts a chair conformation [puckering parameters: Q = 0.57 (18) Å and φ2 = 178.34 (18) °]. Its mean plane is almost normal to the central pyridin-2-one ring (N1/C1–C5), making a dihedral angle of 87.94 (8)°. The latter ring is inclined to the 2-hy­droxy­benzoyl ring (C7–C12) by 50.92 (8)°. There is an intra­molecular O—H⋯O hydrogen bond in this unit forming an S(6) ring motif (Table 1[link] and Fig. 1[link]). The nitro group is disordered over two orientations and inclined to the pyridine ring to which it is attached by 40 (3) and 61 (4) ° for planes N1/O1/O2 and N1′/O1′/O2′, respectively. The geometrical parameters of the title compound are close to those observed for a similar nitro­pyridine compound, 5-(2-hy­droxy­benzo­yl)-1-methyl-3-nitro­pyridin-2(1H)-one (Vimala et al., 2016[Vimala, G., Poomathi, N., Perumal, P. T. & SubbiahPandi, A. (2016). 1, x160527.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3 0.94 (2) 1.78 (2) 2.602 (2) 146 (2)
C14—H14A⋯O1i 0.97 2.44 3.341 (19) 155
C14—H14A⋯O1′i 0.97 2.57 3.508 (19) 163
C14—H14BCg1ii 0.97 2.87 3.596 (2) 132
Symmetry codes: (i) x, y, z-1; (ii) -x+2, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular O—H⋯O hydrogen bond is shown as a dashed line (see Table 1[link]).

In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming chains propagating along [001]; see Table 1[link] and Fig. 2[link]. Inversion-related chains are linked by C—H⋯π inter­actions (Table 1[link]), forming columns along the c-axis direction, as shown in Fig. 2[link].

[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines and the C—H⋯π inter­actions are represented by dashed arrows (see Table 1[link]). For clarity, only H atoms H4A, H14A and H14B, and one component of the disordered NO2 group, have been included.

Synthesis and crystallization

A mixture of 3-formyl­chromone (1 mmol), (Z)-N-(1-(methyl­thio)-2-nitro­vin­yl)cyclo­hexa­namine (1 mmol), and indium tri­fluoro­methane­sulfonate (0.020 mmol) in ethanol (3 mmol) were charged in a 25 ml round-bottomed flask and the mixture was heated at reflux. The resulting solution was stirred for 1 h during reflux. After completion of the reaction, monitored by TLC, the product was filtered and washed with ethanol, and dried under vacuum to obtain the product in 87% yield. It was recrystallized from a solution in ethanol:DMSO-D6 (1:1) by slow evaporation of the solvents, and gave yellow plate-like crystals suitable for X-ray diffraction analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NO2 group is disordered over two positions (N1/O1/O2:N1′/O1′/O2′) with an occupancy ratio 0.50 (2):0.50 (2).

Table 2
Experimental details

Crystal data
Chemical formula C18H18N2O5
Mr 342.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 10.1622 (6), 19.1448 (8), 8.4373 (5)
β (°) 102.425 (3)
V3) 1603.06 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.35 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.964, 0.979
No. of measured, independent and observed [I > 2σ(I)] reflections 22797, 2813, 2106
Rint 0.035
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.04
No. of reflections 2813
No. of parameters 258
No. of restraints 79
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.14
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

1-Cyclohexyl-5-(2-hydroxycyclohexanecarbonyl)-3-nitropyridin-2(1H)-one top
Crystal data top
C18H18N2O5F(000) = 720
Mr = 342.34Dx = 1.418 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2106 reflections
a = 10.1622 (6) Åθ = 2.3–25.0°
b = 19.1448 (8) ŵ = 0.11 mm1
c = 8.4373 (5) ÅT = 293 K
β = 102.425 (3)°Plate, yellow
V = 1603.06 (15) Å30.35 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2813 independent reflections
Radiation source: fine-focus sealed tube2106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.964, Tmax = 0.979k = 2222
22797 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.4118P]
where P = (Fo2 + 2Fc2)/3
2813 reflections(Δ/σ)max = 0.002
258 parametersΔρmax = 0.23 e Å3
79 restraintsΔρmin = 0.14 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.72235 (17)0.00339 (8)0.72648 (18)0.0350 (4)
C20.65445 (17)0.04697 (8)0.63265 (19)0.0341 (4)
H20.60560.08000.67680.041*
C30.65766 (16)0.04945 (8)0.46653 (18)0.0305 (4)
C40.72131 (16)0.00358 (7)0.40569 (18)0.0297 (4)
H40.72160.00350.29550.036*
C50.79293 (17)0.05961 (8)0.66724 (18)0.0338 (4)
C60.58259 (16)0.10552 (8)0.36459 (19)0.0316 (4)
C70.63282 (16)0.13627 (7)0.22978 (18)0.0312 (4)
C80.76772 (17)0.13196 (8)0.2183 (2)0.0387 (4)
H80.82800.10760.29750.046*
C90.8138 (2)0.16251 (9)0.0941 (2)0.0484 (5)
H90.90430.15950.08970.058*
C100.7237 (2)0.19801 (9)0.0249 (2)0.0518 (5)
H100.75350.21800.11130.062*
C110.5909 (2)0.20406 (10)0.0171 (2)0.0507 (5)
H110.53140.22800.09810.061*
C120.54465 (18)0.17466 (8)0.1108 (2)0.0379 (4)
C130.84628 (16)0.11433 (7)0.42306 (18)0.0313 (4)
H130.88310.14750.50980.038*
C140.96297 (17)0.08852 (8)0.3544 (2)0.0379 (4)
H14A0.93070.05530.26790.045*
H14B1.02780.06490.43860.045*
C151.03031 (19)0.14974 (10)0.2888 (2)0.0493 (5)
H15A1.07150.18000.37790.059*
H15B1.10100.13240.23810.059*
C160.92978 (19)0.19132 (9)0.1659 (2)0.0451 (5)
H16A0.97440.23190.13280.054*
H16B0.89750.16280.07050.054*
C170.81130 (18)0.21494 (8)0.2339 (2)0.0402 (4)
H17A0.74650.23850.14960.048*
H17B0.84200.24810.32100.048*
C180.74314 (17)0.15355 (8)0.2984 (2)0.0382 (4)
H18A0.67130.17040.34770.046*
H18B0.70410.12260.20980.046*
O30.47702 (12)0.12623 (6)0.39842 (15)0.0448 (3)
O40.41388 (13)0.18460 (7)0.11370 (18)0.0573 (4)
O50.85183 (15)0.10691 (6)0.74796 (14)0.0550 (4)
N20.78391 (13)0.05618 (6)0.49840 (14)0.0288 (3)
N10.714 (2)0.0019 (12)0.8973 (13)0.058 (4)0.50 (6)
O10.811 (3)0.0188 (13)0.9989 (19)0.091 (4)0.50 (6)
O20.610 (2)0.0133 (15)0.932 (2)0.094 (4)0.50 (6)
N1'0.733 (2)0.0058 (13)0.9032 (12)0.054 (3)0.50 (6)
O1'0.847 (2)0.0006 (14)0.986 (2)0.089 (4)0.50 (6)
O2'0.630 (3)0.0080 (17)0.949 (2)0.107 (5)0.50 (6)
H4A0.402 (2)0.1694 (13)0.215 (3)0.089 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0481 (11)0.0341 (9)0.0249 (8)0.0055 (8)0.0123 (7)0.0017 (7)
C20.0387 (10)0.0296 (8)0.0372 (9)0.0021 (7)0.0152 (8)0.0034 (7)
C30.0308 (9)0.0288 (8)0.0323 (8)0.0009 (7)0.0078 (7)0.0008 (6)
C40.0340 (9)0.0297 (8)0.0255 (8)0.0016 (7)0.0065 (7)0.0028 (6)
C50.0413 (10)0.0327 (9)0.0265 (8)0.0023 (7)0.0053 (7)0.0027 (7)
C60.0299 (9)0.0277 (8)0.0365 (9)0.0001 (7)0.0056 (7)0.0047 (7)
C70.0347 (9)0.0252 (8)0.0334 (8)0.0026 (7)0.0069 (7)0.0002 (6)
C80.0361 (10)0.0356 (9)0.0440 (10)0.0048 (8)0.0080 (8)0.0055 (8)
C90.0432 (11)0.0475 (10)0.0588 (12)0.0029 (9)0.0206 (10)0.0105 (9)
C100.0632 (14)0.0463 (10)0.0511 (11)0.0047 (10)0.0243 (10)0.0145 (9)
C110.0580 (13)0.0470 (10)0.0465 (11)0.0122 (9)0.0101 (10)0.0158 (9)
C120.0382 (10)0.0330 (9)0.0422 (10)0.0070 (8)0.0079 (8)0.0020 (7)
C130.0396 (9)0.0262 (8)0.0282 (8)0.0057 (7)0.0070 (7)0.0023 (6)
C140.0338 (10)0.0387 (9)0.0412 (9)0.0037 (7)0.0078 (8)0.0072 (7)
C150.0395 (11)0.0505 (11)0.0605 (12)0.0002 (9)0.0166 (9)0.0141 (9)
C160.0530 (12)0.0414 (10)0.0430 (10)0.0037 (8)0.0151 (9)0.0109 (8)
C170.0461 (11)0.0321 (9)0.0404 (10)0.0014 (8)0.0048 (8)0.0066 (7)
C180.0368 (10)0.0326 (8)0.0464 (10)0.0038 (7)0.0113 (8)0.0049 (7)
O30.0384 (7)0.0443 (7)0.0549 (8)0.0096 (6)0.0176 (6)0.0064 (6)
O40.0422 (8)0.0688 (9)0.0605 (9)0.0197 (7)0.0101 (7)0.0198 (7)
O50.0845 (10)0.0465 (7)0.0317 (7)0.0202 (7)0.0076 (6)0.0087 (6)
N20.0350 (8)0.0259 (6)0.0254 (7)0.0018 (6)0.0063 (6)0.0013 (5)
N10.096 (7)0.039 (6)0.039 (6)0.004 (6)0.017 (4)0.003 (4)
O10.145 (10)0.089 (7)0.035 (3)0.043 (6)0.009 (5)0.012 (4)
O20.117 (6)0.124 (10)0.060 (5)0.001 (6)0.058 (4)0.022 (5)
N1'0.098 (7)0.042 (5)0.029 (5)0.016 (5)0.028 (4)0.002 (4)
O1'0.120 (7)0.109 (8)0.029 (4)0.013 (6)0.006 (4)0.003 (4)
O2'0.136 (9)0.128 (10)0.080 (5)0.014 (6)0.078 (6)0.001 (6)
Geometric parameters (Å, º) top
C1—C21.341 (2)C12—O41.348 (2)
C1—C51.441 (2)C13—N21.4895 (19)
C1—N11.463 (10)C13—C141.511 (2)
C1—N1'1.472 (9)C13—C181.515 (2)
C2—C31.410 (2)C13—H130.9800
C2—H20.9300C14—C151.520 (2)
C3—C41.362 (2)C14—H14A0.9700
C3—C61.480 (2)C14—H14B0.9700
C4—N21.3477 (18)C15—C161.516 (2)
C4—H40.9300C15—H15A0.9700
C5—O51.2111 (19)C15—H15B0.9700
C5—N21.4092 (19)C16—C171.510 (2)
C6—O31.2335 (18)C16—H16A0.9700
C6—C71.467 (2)C16—H16B0.9700
C7—C81.397 (2)C17—C181.523 (2)
C7—C121.401 (2)C17—H17A0.9700
C8—C91.368 (2)C17—H17B0.9700
C8—H80.9300C18—H18A0.9700
C9—C101.383 (3)C18—H18B0.9700
C9—H90.9300O4—H4A0.94 (3)
C10—C111.370 (3)N1—O21.193 (11)
C10—H100.9300N1—O11.209 (11)
C11—C121.386 (2)N1'—O2'1.196 (11)
C11—H110.9300N1'—O1'1.216 (12)
C2—C1—C5124.31 (14)C14—C13—H13107.1
C2—C1—N1115.8 (10)C18—C13—H13107.1
C5—C1—N1119.8 (10)C13—C14—C15109.83 (13)
C2—C1—N1'122.6 (9)C13—C14—H14A109.7
C5—C1—N1'113.1 (9)C15—C14—H14A109.7
N1—C1—N1'8.2 (14)C13—C14—H14B109.7
C1—C2—C3119.49 (15)C15—C14—H14B109.7
C1—C2—H2120.3H14A—C14—H14B108.2
C3—C2—H2120.3C16—C15—C14111.35 (15)
C4—C3—C2117.64 (14)C16—C15—H15A109.4
C4—C3—C6123.27 (14)C14—C15—H15A109.4
C2—C3—C6118.87 (14)C16—C15—H15B109.4
N2—C4—C3122.77 (14)C14—C15—H15B109.4
N2—C4—H4118.6H15A—C15—H15B108.0
C3—C4—H4118.6C17—C16—C15111.86 (14)
O5—C5—N2121.33 (15)C17—C16—H16A109.2
O5—C5—C1125.88 (14)C15—C16—H16A109.2
N2—C5—C1112.76 (13)C17—C16—H16B109.2
O3—C6—C7121.04 (14)C15—C16—H16B109.2
O3—C6—C3117.63 (14)H16A—C16—H16B107.9
C7—C6—C3121.32 (14)C16—C17—C18111.46 (14)
C8—C7—C12117.84 (15)C16—C17—H17A109.3
C8—C7—C6122.72 (14)C18—C17—H17A109.3
C12—C7—C6119.36 (15)C16—C17—H17B109.3
C9—C8—C7122.06 (16)C18—C17—H17B109.3
C9—C8—H8119.0H17A—C17—H17B108.0
C7—C8—H8119.0C13—C18—C17109.31 (14)
C8—C9—C10118.91 (18)C13—C18—H18A109.8
C8—C9—H9120.5C17—C18—H18A109.8
C10—C9—H9120.5C13—C18—H18B109.8
C11—C10—C9120.80 (17)C17—C18—H18B109.8
C11—C10—H10119.6H18A—C18—H18B108.3
C9—C10—H10119.6C12—O4—H4A107.1 (15)
C10—C11—C12120.38 (17)C4—N2—C5122.78 (13)
C10—C11—H11119.8C4—N2—C13120.12 (12)
C12—C11—H11119.8C5—N2—C13117.10 (12)
O4—C12—C11117.22 (16)O2—N1—O1122.0 (14)
O4—C12—C7122.84 (15)O2—N1—C1119.3 (14)
C11—C12—C7119.94 (16)O1—N1—C1118.6 (15)
N2—C13—C14111.12 (12)O2'—N1'—O1'127.2 (15)
N2—C13—C18111.87 (13)O2'—N1'—C1116.7 (14)
C14—C13—C18112.26 (13)O1'—N1'—C1116.0 (14)
N2—C13—H13107.1
C5—C1—C2—C34.5 (3)C6—C7—C12—C11179.93 (15)
N1—C1—C2—C3179.8 (9)N2—C13—C14—C15176.16 (13)
N1'—C1—C2—C3174.6 (10)C18—C13—C14—C1557.71 (18)
C1—C2—C3—C45.4 (2)C13—C14—C15—C1655.0 (2)
C1—C2—C3—C6179.78 (14)C14—C15—C16—C1754.6 (2)
C2—C3—C4—N22.2 (2)C15—C16—C17—C1855.1 (2)
C6—C3—C4—N2176.74 (14)N2—C13—C18—C17176.42 (13)
C2—C1—C5—O5177.75 (17)C14—C13—C18—C1757.85 (17)
N1—C1—C5—O52.3 (9)C16—C17—C18—C1355.73 (18)
N1'—C1—C5—O53.1 (9)C3—C4—N2—C52.2 (2)
C2—C1—C5—N20.3 (2)C3—C4—N2—C13177.20 (14)
N1—C1—C5—N2175.7 (9)O5—C5—N2—C4178.73 (15)
N1'—C1—C5—N2178.9 (9)C1—C5—N2—C43.1 (2)
C4—C3—C6—O3141.48 (16)O5—C5—N2—C131.8 (2)
C2—C3—C6—O333.0 (2)C1—C5—N2—C13176.31 (13)
C4—C3—C6—C739.5 (2)C14—C13—N2—C465.36 (18)
C2—C3—C6—C7145.97 (15)C18—C13—N2—C460.99 (18)
O3—C6—C7—C8158.65 (15)C14—C13—N2—C5115.17 (15)
C3—C6—C7—C820.3 (2)C18—C13—N2—C5118.48 (15)
O3—C6—C7—C1218.1 (2)C2—C1—N1—O238 (2)
C3—C6—C7—C12162.94 (14)C5—C1—N1—O2137.5 (18)
C12—C7—C8—C91.4 (2)N1'—C1—N1—O2175 (14)
C6—C7—C8—C9178.21 (15)C2—C1—N1—O1145 (2)
C7—C8—C9—C100.8 (3)C5—C1—N1—O140 (3)
C8—C9—C10—C111.5 (3)N1'—C1—N1—O13 (11)
C9—C10—C11—C120.1 (3)C2—C1—N1'—O2'58 (3)
C10—C11—C12—O4177.84 (17)C5—C1—N1'—O2'123 (2)
C10—C11—C12—C72.4 (3)N1—C1—N1'—O2'22 (11)
C8—C7—C12—O4177.25 (15)C2—C1—N1'—O1'117 (2)
C6—C7—C12—O40.3 (2)C5—C1—N1'—O1'62 (2)
C8—C7—C12—C113.0 (2)N1—C1—N1'—O1'153 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.94 (2)1.78 (2)2.602 (2)146 (2)
C14—H14A···O1i0.972.443.341 (19)155
C14—H14A···O1i0.972.573.508 (19)163
C14—H14B···Cg1ii0.972.873.596 (2)132
Symmetry codes: (i) x, y, z1; (ii) x+2, y, z+1.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAbdullah, Z. (2005). Int. J. Chem. Sci. 3, 9–15.  CAS Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, Y., Jin, Y. Z., Xiong, Y. P. & Li, Z. C. (2011). Sci. Technol. Eng. 11, 1841–1843.  Google Scholar
First citationKawai, M., Lee, M. J., Evans, K. O. & Nordlund, T. M. (2001). J. Fluoresc. 11, 23–32.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVimala, G., Poomathi, N., Perumal, P. T. & SubbiahPandi, A. (2016). 1, x160527.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds