organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Allyl-3′-phenyl-6′H-spiro­[indoline-3,4′-isoxazolo[4′,5′:5,6]pyrido[2,3-d]pyrimidine]-2,5′,7′(8′H,9′H)-trione di­methyl sulfoxide monosolvate

CROSSMARK_Color_square_no_text.svg

aResearch scholar, Bharathiyar University, Coimbatore 641 046, India, and bPG & Research Department of Chemistry, Government Arts College, Chidambaram, India
*Correspondence e-mail: palanivelchem@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 October 2016; accepted 23 December 2016; online 13 January 2017)

In the title solvated compound, C24H17N5O4·C2H6OS, the solvent mol­ecule, dimethyl sulfoxide, is linked to the title mol­ecule by an N—H⋯O hydrogen bond. The pyridine ring adopts a twist-boat conformation. The isoxazole ring is inclined to the indoline ring system, the pyrimidine ring, and the phenyl ring by 82.31 (7), 10.41 (8) and 53.77 (10)°, respectively. There is an intra­molecular C—H⋯π inter­action present involving the phenyl ring and the indoline ring system. In the crystal, mol­ecules are connected by two pairs of N—H⋯O hydrogen bonds, forming chains along the b-axis direction, and enclosing R22(8) and R22(14) ring motifs. The chains are linked by C—H⋯O and C—H⋯N hydrogen bonds and offset ππ inter­actions, between the pyrimidine and isoxazole rings of inversion-related mol­ecules [centroid–centroid distance = 3.7140 (9) Å], forming a three-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrrolidine derivatives are used as norepinephrine reuptake inhibitors and 5-HT(1A) partial agonists for treating neuropsychiatric disorders including depression and anxiety (Pettersson et al., 2011[Pettersson, M., Campbell, B. M., Dounay, A. B., Gray, D. L., Xie, L., O'Donnell, C. J., Stratman, N. C., Zoski, K., Drummond, E., Bora, G., Probert, A. & Whisman, T. (2011). Bioorg. Med. Chem. Lett. 21, 865-868.]). These derivatives are also used as α-mannosidase inhibitors and have anti­tumor activities against hematological and solid malignancies (Bello et al., 2010[Bello, C., Cea, M., Dal Bello, G., Garuti, A., Rocco, I., Cirmena, G., Moran, E., Nahimana, A., Duchosal, M. A., Fruscione, F., Pronzato, P., Grossi, F., Patrone, F., Ballestrero, A., Dupuis, M., Sordat, B., Nencioni, A. & Vogel, P. (2010). Bioorg. Med. Chem. 18, 3320-3334.]). In view of their importance, we have undertaken the synthesis and crystal structure determination of the title compound and the results are presented herein.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The solvent mol­ecule is attached to the title mol­ecule via an N4—H4A⋯O5 hydrogen bond and there is an intra­molecular C—H⋯π inter­action present involving the phenyl ring (C1–C6) and the indoline (N5/C13/C15–C21) ring system (Fig. 1[link] and Table 1[link]). The sum of the angles at N3 and N4 of the pyrimidine ring (360 and 360.09°, respectively) is in accordance with sp2 hybridization. The pyridine ring (N2/C8/C9/C12–C14) adopts a twist-boat conformation [puckering parameters: Q, θ, φ = 0.1030 (15) Å, 98.1 (8)° and 34.1 (9)°, respectively]. The isoxazole ring (O1/N1/C7/C8/C14) makes dihedral angles of 82.31 (7), 10.41 (8) and 53.77 (10)° with the mean plane of the indoline (N5/C13/C15—C21) ring system and the pyrimidine (N3/N4/C9–C12) and the phenyl (C1–C6) rings, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O5 0.86 2.03 2.862 (2) 163
C1—H1⋯Cg 0.93 2.88 3.624 (2) 138
N2—H2A⋯O4i 0.86 2.11 2.7631 (16) 132
N3—H3A⋯O2ii 0.86 1.99 2.7887 (18) 155
C17—H17⋯N1iii 0.93 2.53 3.412 (2) 159
C19—H19⋯O3iv 0.93 2.42 3.324 (2) 165
C26—H26C⋯O1v 0.96 2.59 3.322 (3) 133
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+1, -y+1, -z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) -x, -y+2, -z; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and 30% probability displacement ellipsoids. The N—H⋯O hydrogen bond is shown as a dashed line and the intra­molecular C—H⋯π inter­action by a blue dashed arrow (see Table 1[link]).

In the crystal, pairs of N2—H2A⋯O4i and N3—H3A⋯O2ii hydrogen bonds form centrosymmetric loops, with R22(8) and R22(14) ring motifs. These combine to form chains which propagate in the b-axis direction (Fig. 2[link] and Table 1[link]). The crystal packing is further stabilized by C—H⋯O and C—H⋯N hydrogen bonds and offset ππ stacking inter­actions, forming a three-dimensional structure (Table 1[link] and Fig. 3[link]). The offset ππ inter­actions involve inversion-related isoxazolo and pyrimidine rings: Cg1⋯Cg4(−x + 1, −y + 2, −z) = 3.7140 (9) Å, α = 10.41 (8) °, inter­planar distances 3.518 (1)/3.247 (1) Å, slippage = 1.803 Å, where Cg1 and Cg4 are the centroids of rings (O1/N1/C7/C8/C14) and (N3/N4/C9–C12), respectively.

[Figure 2]
Figure 2
A partial view along the c axis of the crystal packing of the title compound. The N—H⋯O hydrogen bonds, enclosing R22(8) and R22(14) ring motifs (see Table 1[link]), are shown as dashed lines, and H atoms not involved in these inter­action have been omitted.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. Hydrogen bonds (see Table 1[link]), are shown as dashed lines, and for clarity, H atoms not involved in these inter­action have been omitted.

Synthesis and crystallization

A mixture of N-allyl isatin (1 mmol), 6-amino­uracil (1 mmol), isoxazole (1 mmol) and p-TSA·H2O (0.20 mmol) in water (3 ml) were placed in a 25 ml round-bottomed flask and the mixture was heated at reflux with stirring for 4 h. The consumption of the starting material was monitored by TLC. The precipitated solid was filtered and washed with ethanol (5–7 ml), and dried under vacuum to obtain pure title product in good yield (87%). Colourless block-like crystals were obtained by slow evaporation of a solution in dimethyl sulfoxide.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H17N5O4·C2H6OS
Mr 517.55
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 13.2381 (3), 9.9265 (2), 19.0348 (4)
β (°) 100.693 (1)
V3) 2457.89 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.2 × 0.17 × 0.16
 
Data collection
Diffractometer Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.625, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22793, 6183, 4931
Rint 0.024
(sin θ/λ)max−1) 0.671
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.143, 0.99
No. of reflections 6183
No. of parameters 336
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.52
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

1-Allyl-3'-phenyl-6'H-spiro[indoline-3,4'-isoxazolo[4',5':5,6]pyrido[2,3-d]pyrimidine]-2,5',7'(8'H,9'H)-trione dimethyl sulfoxide monosolvate top
Crystal data top
C24H17N5O4·C2H6OSF(000) = 1080
Mr = 517.55Dx = 1.399 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.2381 (3) ÅCell parameters from 6183 reflections
b = 9.9265 (2) Åθ = 1.7–28.5°
c = 19.0348 (4) ŵ = 0.18 mm1
β = 100.693 (1)°T = 293 K
V = 2457.89 (9) Å3Block, colourless
Z = 40.2 × 0.17 × 0.16 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6183 independent reflections
Radiation source: fine-focus sealed tube4931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scansθmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1717
Tmin = 0.625, Tmax = 0.746k = 1313
22793 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0787P)2 + 1.1801P]
where P = (Fo2 + 2Fc2)/3
6183 reflections(Δ/σ)max < 0.001
336 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C250.3362 (2)0.3045 (3)0.20062 (16)0.0773 (8)
H25A0.36970.31200.16020.116*
H25B0.32030.21170.20770.116*
H25C0.38100.33810.24250.116*
C260.1865 (2)0.3806 (3)0.26996 (16)0.0801 (8)
H26A0.24160.41210.30630.120*
H26B0.17370.28720.27790.120*
H26C0.12550.43190.27170.120*
O50.25162 (13)0.54474 (15)0.18055 (8)0.0582 (4)
S10.22081 (5)0.40028 (6)0.18485 (3)0.05503 (16)
C10.19635 (14)1.24982 (19)0.19265 (10)0.0416 (4)
H10.17421.16190.20310.050*
C20.13102 (16)1.3570 (2)0.21489 (12)0.0541 (5)
H20.06521.34100.24050.065*
C30.16352 (19)1.4871 (2)0.19911 (13)0.0605 (6)
H30.11931.55870.21380.073*
C40.2602 (2)1.5114 (2)0.16207 (14)0.0619 (6)
H40.28151.59960.15150.074*
C50.32702 (17)1.40555 (18)0.14015 (11)0.0484 (5)
H50.39331.42260.11570.058*
C60.29440 (13)1.27389 (16)0.15493 (8)0.0339 (3)
C70.36787 (12)1.16141 (15)0.13492 (8)0.0295 (3)
C80.44759 (11)0.97633 (15)0.09886 (8)0.0263 (3)
C90.41376 (10)0.79624 (14)0.03097 (7)0.0247 (3)
C100.39271 (12)0.60233 (15)0.04044 (8)0.0313 (3)
C110.27034 (11)0.78910 (16)0.02992 (8)0.0304 (3)
C120.32515 (10)0.85463 (14)0.01953 (8)0.0251 (3)
C130.27903 (10)0.98222 (14)0.05754 (7)0.0239 (3)
C140.35792 (11)1.03975 (14)0.09694 (8)0.0253 (3)
C150.17513 (11)0.95515 (14)0.10448 (8)0.0252 (3)
C160.14866 (13)0.87217 (16)0.16264 (9)0.0338 (3)
H160.19820.82050.17890.041*
C170.04632 (14)0.86675 (19)0.19675 (10)0.0428 (4)
H170.02700.81120.23630.051*
C180.02682 (13)0.9440 (2)0.17197 (10)0.0435 (4)
H180.09520.93760.19470.052*
C190.00087 (12)1.03074 (18)0.11404 (10)0.0375 (4)
H190.05001.08370.09810.045*
C200.10113 (11)1.03445 (15)0.08129 (8)0.0274 (3)
C210.24980 (11)1.08978 (15)0.00520 (8)0.0265 (3)
C220.09541 (13)1.22087 (18)0.00906 (9)0.0382 (4)
H22A0.13111.23710.05760.046*
H22B0.02591.19240.01100.046*
C230.0922 (2)1.3473 (2)0.03306 (16)0.0697 (7)
H230.15441.38930.03500.084*
C240.0094 (4)1.4031 (4)0.0671 (2)0.1144 (15)
H24A0.05431.36400.06630.137*
H24B0.01331.48250.09240.137*
N10.45659 (11)1.16924 (14)0.15619 (8)0.0363 (3)
N20.47848 (9)0.85237 (13)0.07198 (7)0.0290 (3)
H2A0.53320.81300.07990.035*
N30.44539 (10)0.67292 (13)0.00266 (7)0.0297 (3)
H3A0.50080.63860.01250.036*
N40.31052 (10)0.66641 (14)0.05790 (7)0.0338 (3)
H4A0.28050.62810.08900.041*
N50.14801 (9)1.11418 (13)0.02309 (7)0.0287 (3)
O10.50932 (8)1.04704 (11)0.13302 (6)0.0336 (3)
O20.41907 (10)0.48822 (12)0.06147 (7)0.0432 (3)
O30.19414 (10)0.83580 (14)0.04842 (7)0.0461 (3)
O40.30914 (8)1.14745 (12)0.04212 (6)0.0366 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C250.109 (2)0.0547 (14)0.0711 (16)0.0167 (14)0.0239 (15)0.0052 (12)
C260.097 (2)0.0754 (17)0.0801 (18)0.0189 (15)0.0486 (16)0.0116 (14)
O50.0783 (10)0.0463 (8)0.0560 (9)0.0017 (7)0.0277 (8)0.0116 (7)
S10.0697 (4)0.0498 (3)0.0427 (3)0.0102 (2)0.0032 (2)0.0009 (2)
C10.0425 (9)0.0396 (9)0.0430 (9)0.0061 (7)0.0086 (7)0.0101 (7)
C20.0458 (11)0.0600 (13)0.0553 (12)0.0156 (9)0.0057 (9)0.0193 (10)
C30.0697 (14)0.0474 (12)0.0646 (14)0.0281 (11)0.0131 (11)0.0207 (10)
C40.0783 (16)0.0326 (10)0.0723 (15)0.0155 (10)0.0077 (12)0.0102 (9)
C50.0567 (11)0.0323 (9)0.0535 (11)0.0065 (8)0.0031 (9)0.0061 (8)
C60.0408 (8)0.0297 (7)0.0326 (7)0.0080 (6)0.0106 (6)0.0086 (6)
C70.0330 (7)0.0275 (7)0.0288 (7)0.0031 (6)0.0077 (6)0.0034 (6)
C80.0256 (6)0.0284 (7)0.0267 (7)0.0013 (5)0.0098 (5)0.0025 (5)
C90.0244 (6)0.0246 (6)0.0263 (6)0.0057 (5)0.0080 (5)0.0023 (5)
C100.0334 (7)0.0287 (7)0.0345 (7)0.0091 (6)0.0130 (6)0.0057 (6)
C110.0291 (7)0.0301 (7)0.0350 (7)0.0099 (6)0.0138 (6)0.0066 (6)
C120.0238 (6)0.0250 (7)0.0282 (7)0.0072 (5)0.0093 (5)0.0034 (5)
C130.0227 (6)0.0232 (6)0.0271 (6)0.0066 (5)0.0079 (5)0.0012 (5)
C140.0246 (6)0.0250 (6)0.0273 (6)0.0044 (5)0.0072 (5)0.0017 (5)
C150.0245 (6)0.0237 (6)0.0281 (7)0.0046 (5)0.0070 (5)0.0019 (5)
C160.0360 (8)0.0302 (7)0.0364 (8)0.0067 (6)0.0097 (6)0.0050 (6)
C170.0430 (9)0.0414 (9)0.0416 (9)0.0012 (7)0.0011 (7)0.0134 (7)
C180.0282 (8)0.0488 (10)0.0499 (10)0.0040 (7)0.0025 (7)0.0090 (8)
C190.0255 (7)0.0423 (9)0.0442 (9)0.0095 (6)0.0050 (6)0.0057 (7)
C200.0257 (7)0.0269 (7)0.0300 (7)0.0055 (5)0.0062 (5)0.0014 (5)
C210.0252 (7)0.0270 (7)0.0283 (7)0.0056 (5)0.0078 (5)0.0007 (5)
C220.0344 (8)0.0400 (9)0.0411 (9)0.0130 (7)0.0097 (7)0.0122 (7)
C230.0858 (17)0.0399 (11)0.0924 (18)0.0233 (11)0.0403 (15)0.0006 (11)
C240.162 (4)0.089 (2)0.104 (3)0.074 (2)0.054 (2)0.0295 (19)
N10.0377 (7)0.0332 (7)0.0402 (7)0.0045 (6)0.0130 (6)0.0106 (6)
N20.0237 (6)0.0305 (6)0.0363 (7)0.0098 (5)0.0149 (5)0.0062 (5)
N30.0275 (6)0.0278 (6)0.0373 (7)0.0118 (5)0.0150 (5)0.0073 (5)
N40.0348 (7)0.0313 (7)0.0406 (7)0.0110 (5)0.0210 (6)0.0117 (6)
N50.0243 (6)0.0300 (6)0.0321 (6)0.0091 (5)0.0061 (5)0.0056 (5)
O10.0296 (5)0.0353 (6)0.0393 (6)0.0044 (4)0.0148 (5)0.0107 (5)
O20.0505 (7)0.0316 (6)0.0543 (8)0.0182 (5)0.0275 (6)0.0157 (5)
O30.0425 (7)0.0466 (7)0.0584 (8)0.0215 (6)0.0330 (6)0.0186 (6)
O40.0273 (5)0.0441 (7)0.0376 (6)0.0044 (5)0.0040 (4)0.0118 (5)
Geometric parameters (Å, º) top
C25—S11.777 (3)C11—O31.2200 (18)
C25—H25A0.9600C11—N41.3945 (19)
C25—H25B0.9600C11—C121.4454 (19)
C25—H25C0.9600C12—C131.5285 (18)
C26—S11.773 (3)C13—C141.5066 (19)
C26—H26A0.9600C13—C151.5187 (19)
C26—H26B0.9600C13—C211.5574 (19)
C26—H26C0.9600C15—C161.372 (2)
O5—S11.4972 (16)C15—C201.3909 (19)
C1—C61.383 (3)C16—C171.391 (2)
C1—C21.387 (3)C16—H160.9300
C1—H10.9300C17—C181.384 (3)
C2—C31.376 (3)C17—H170.9300
C2—H20.9300C18—C191.391 (2)
C3—C41.364 (4)C18—H180.9300
C3—H30.9300C19—C201.379 (2)
C4—C51.387 (3)C19—H190.9300
C4—H40.9300C20—N51.4085 (19)
C5—C61.389 (3)C21—O41.2221 (19)
C5—H50.9300C21—N51.3490 (18)
C6—C71.483 (2)C22—N51.4626 (18)
C7—N11.314 (2)C22—C231.486 (3)
C7—C141.426 (2)C22—H22A0.9700
C8—O11.3343 (17)C22—H22B0.9700
C8—C141.3501 (19)C23—C241.290 (5)
C8—N21.3658 (19)C23—H230.9300
C9—C121.3617 (18)C24—H24A0.9300
C9—N31.3714 (18)C24—H24B0.9300
C9—N21.3791 (18)N1—O11.4279 (17)
C10—O21.2301 (19)N2—H2A0.8600
C10—N41.3540 (19)N3—H3A0.8600
C10—N31.3647 (19)N4—H4A0.8600
S1—C25—H25A109.5C14—C13—C21109.64 (12)
S1—C25—H25B109.5C15—C13—C21101.08 (10)
H25A—C25—H25B109.5C12—C13—C21112.96 (11)
S1—C25—H25C109.5C8—C14—C7102.52 (12)
H25A—C25—H25C109.5C8—C14—C13122.07 (13)
H25B—C25—H25C109.5C7—C14—C13135.32 (13)
S1—C26—H26A109.5C16—C15—C20120.42 (14)
S1—C26—H26B109.5C16—C15—C13130.44 (13)
H26A—C26—H26B109.5C20—C15—C13109.12 (12)
S1—C26—H26C109.5C15—C16—C17118.74 (14)
H26A—C26—H26C109.5C15—C16—H16120.6
H26B—C26—H26C109.5C17—C16—H16120.6
O5—S1—C26105.90 (12)C18—C17—C16120.12 (16)
O5—S1—C25106.69 (12)C18—C17—H17119.9
C26—S1—C2598.34 (15)C16—C17—H17119.9
C6—C1—C2119.87 (19)C17—C18—C19121.84 (16)
C6—C1—H1120.1C17—C18—H18119.1
C2—C1—H1120.1C19—C18—H18119.1
C3—C2—C1120.1 (2)C20—C19—C18116.87 (14)
C3—C2—H2120.0C20—C19—H19121.6
C1—C2—H2120.0C18—C19—H19121.6
C4—C3—C2120.31 (19)C19—C20—C15121.99 (14)
C4—C3—H3119.8C19—C20—N5128.48 (13)
C2—C3—H3119.8C15—C20—N5109.52 (12)
C3—C4—C5120.4 (2)O4—C21—N5125.26 (13)
C3—C4—H4119.8O4—C21—C13126.19 (12)
C5—C4—H4119.8N5—C21—C13108.47 (12)
C4—C5—C6119.7 (2)N5—C22—C23110.75 (15)
C4—C5—H5120.2N5—C22—H22A109.5
C6—C5—H5120.2C23—C22—H22A109.5
C1—C6—C5119.64 (16)N5—C22—H22B109.5
C1—C6—C7120.73 (15)C23—C22—H22B109.5
C5—C6—C7119.47 (16)H22A—C22—H22B108.1
N1—C7—C14112.23 (13)C24—C23—C22124.8 (3)
N1—C7—C6117.22 (14)C24—C23—H23117.6
C14—C7—C6130.52 (14)C22—C23—H23117.6
O1—C8—C14112.89 (13)C23—C24—H24A120.0
O1—C8—N2119.25 (12)C23—C24—H24B120.0
C14—C8—N2127.84 (13)H24A—C24—H24B120.0
C12—C9—N3121.76 (13)C7—N1—O1105.56 (12)
C12—C9—N2124.23 (13)C8—N2—C9113.69 (11)
N3—C9—N2114.00 (12)C8—N2—H2A123.2
O2—C10—N4123.02 (14)C9—N2—H2A123.2
O2—C10—N3121.51 (14)C10—N3—C9122.80 (12)
N4—C10—N3115.47 (13)C10—N3—H3A118.6
O3—C11—N4119.92 (14)C9—N3—H3A118.6
O3—C11—C12123.97 (14)C10—N4—C11125.69 (13)
N4—C11—C12116.10 (12)C10—N4—H4A117.2
C9—C12—C11117.65 (13)C11—N4—H4A117.2
C9—C12—C13123.87 (12)C21—N5—C20111.80 (12)
C11—C12—C13118.46 (11)C21—N5—C22123.72 (13)
C14—C13—C15114.20 (12)C20—N5—C22124.16 (12)
C14—C13—C12107.27 (11)C8—O1—N1106.79 (11)
C15—C13—C12111.75 (12)
C6—C1—C2—C30.3 (3)C20—C15—C16—C171.4 (2)
C1—C2—C3—C40.5 (4)C13—C15—C16—C17179.56 (16)
C2—C3—C4—C50.3 (4)C15—C16—C17—C180.1 (3)
C3—C4—C5—C61.2 (4)C16—C17—C18—C191.5 (3)
C2—C1—C6—C50.6 (3)C17—C18—C19—C201.3 (3)
C2—C1—C6—C7175.83 (17)C18—C19—C20—C150.3 (3)
C4—C5—C6—C11.3 (3)C18—C19—C20—N5178.72 (17)
C4—C5—C6—C7176.65 (19)C16—C15—C20—C191.6 (2)
C1—C6—C7—N1123.62 (18)C13—C15—C20—C19179.87 (15)
C5—C6—C7—N151.6 (2)C16—C15—C20—N5177.52 (14)
C1—C6—C7—C1454.3 (2)C13—C15—C20—N50.96 (16)
C5—C6—C7—C14130.43 (19)C14—C13—C21—O456.51 (19)
N3—C9—C12—C116.4 (2)C15—C13—C21—O4177.41 (15)
N2—C9—C12—C11174.55 (14)C12—C13—C21—O463.1 (2)
N3—C9—C12—C13171.57 (13)C14—C13—C21—N5120.39 (13)
N2—C9—C12—C137.4 (2)C15—C13—C21—N50.51 (15)
O3—C11—C12—C9174.82 (17)C12—C13—C21—N5120.04 (13)
N4—C11—C12—C94.0 (2)N5—C22—C23—C24115.0 (3)
O3—C11—C12—C137.1 (2)C14—C7—N1—O10.99 (18)
N4—C11—C12—C13174.10 (13)C6—C7—N1—O1177.31 (13)
C9—C12—C13—C149.96 (19)O1—C8—N2—C9172.97 (13)
C11—C12—C13—C14172.03 (13)C14—C8—N2—C98.5 (2)
C9—C12—C13—C15115.92 (15)C12—C9—N2—C82.1 (2)
C11—C12—C13—C1562.08 (17)N3—C9—N2—C8178.79 (13)
C9—C12—C13—C21130.89 (15)O2—C10—N3—C9175.32 (15)
C11—C12—C13—C2151.10 (18)N4—C10—N3—C94.6 (2)
O1—C8—C14—C70.51 (17)C12—C9—N3—C102.1 (2)
N2—C8—C14—C7178.07 (15)N2—C9—N3—C10178.80 (14)
O1—C8—C14—C13176.47 (13)O2—C10—N4—C11172.78 (17)
N2—C8—C14—C135.0 (2)N3—C10—N4—C117.1 (2)
N1—C7—C14—C80.95 (18)O3—C11—N4—C10178.19 (17)
C6—C7—C14—C8177.06 (16)C12—C11—N4—C102.9 (2)
N1—C7—C14—C13175.41 (16)O4—C21—N5—C20178.07 (15)
C6—C7—C14—C136.6 (3)C13—C21—N5—C201.14 (17)
C15—C13—C14—C8120.20 (15)O4—C21—N5—C224.3 (3)
C12—C13—C14—C84.21 (19)C13—C21—N5—C22172.62 (14)
C21—C13—C14—C8127.21 (15)C19—C20—N5—C21179.55 (16)
C15—C13—C14—C764.0 (2)C15—C20—N5—C211.35 (18)
C12—C13—C14—C7171.59 (16)C19—C20—N5—C226.7 (3)
C21—C13—C14—C748.6 (2)C15—C20—N5—C22172.37 (14)
C14—C13—C15—C1660.4 (2)C23—C22—N5—C2191.4 (2)
C12—C13—C15—C1661.6 (2)C23—C22—N5—C2081.6 (2)
C21—C13—C15—C16177.99 (15)C14—C8—O1—N10.05 (17)
C14—C13—C15—C20117.90 (13)N2—C8—O1—N1178.76 (13)
C12—C13—C15—C20120.11 (13)C7—N1—O1—C80.64 (17)
C21—C13—C15—C200.29 (15)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4A···O50.862.032.862 (2)163
C1—H1···Cg0.932.883.624 (2)138
N2—H2A···O4i0.862.112.7631 (16)132
N3—H3A···O2ii0.861.992.7887 (18)155
C17—H17···N1iii0.932.533.412 (2)159
C19—H19···O3iv0.932.423.324 (2)165
C26—H26C···O1v0.962.593.322 (3)133
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z; (iii) x+1/2, y1/2, z1/2; (iv) x, y+2, z; (v) x1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Department of chemistry, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationBello, C., Cea, M., Dal Bello, G., Garuti, A., Rocco, I., Cirmena, G., Moran, E., Nahimana, A., Duchosal, M. A., Fruscione, F., Pronzato, P., Grossi, F., Patrone, F., Ballestrero, A., Dupuis, M., Sordat, B., Nencioni, A. & Vogel, P. (2010). Bioorg. Med. Chem. 18, 3320–3334.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPettersson, M., Campbell, B. M., Dounay, A. B., Gray, D. L., Xie, L., O'Donnell, C. J., Stratman, N. C., Zoski, K., Drummond, E., Bora, G., Probert, A. & Whisman, T. (2011). Bioorg. Med. Chem. Lett. 21, 865–868.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds