organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-[Bis(2-chloro­eth­yl)amino]­benzaldehyde

CROSSMARK_Color_square_no_text.svg

aResearch Scholar, Bharathiyar university, Coimbatore 641 046, India, and bPG & Research Department of Chemistry, Government Arts College, Chidambaram, India
*Correspondence e-mail: palanivelchem@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 October 2016; accepted 23 December 2016; online 13 January 2017)

In the title compound, C11H13Cl2NO, the chloroethyl amino groups are twisted with respect to the amino group, with N—C—C—Cl torsion angles of −177.4 (4) and 179.2 (3)°. The carbonyl group lies in the plane of the benzene ring to which it is attached; torsion angles Car—Car—C=O are 0.1 (8) and −178.2 (5)°. In the crystal, C—H⋯Cl and C—H⋯O hydrogen bonds link the mol­ecules, forming sheets parallel to (20-1). The sheets are linked by C—H⋯π inter­actions, forming a three-dimensional framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

An heterocyclic skeleton containing an N atom is the basis of many essential pharmaceuticals and of many physiologically active natural products. Mol­ecules containing heterocyclic substructures continue to be attractive targets for synthesis since they often exhibit diverse and important biological properties. For example, pyr­idine is used in the pharmaceutical industry as a raw material for various drugs, vitamins and fungicides, and as a solvent (Shinkai et al., 2000[Shinkai, H., Ito, T., Iida, T., Kitao, Y., Yamada, H. & Uchida, I. (2000). J. Med. Chem. 43, 4667-4677.]; Jansen et al., 2001[Jansen, B. A. J., van der Zwan, J., den Dulk, H., Brouwer, J. & Reedijk, J. (2001). J. Med. Chem. 44, 245-249.]; Amr et al., 2006[Amr, A. G., Mohamed, A. M., Mohamed, S. F., Abdel-Hafez, N. A. & Hammam, A. G. (2006). Bioorg. Med. Chem. 14, 5481-5488.]) while 2-amino-3-cyano­pyridines have been identified as IKK-inhibitors (Murata et al., 2003[Murata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. & Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett. 13, 913-918.]).

In the title compound (Fig. 1[link]), torsion angle N1—C8—C9—Cl1 = −177.4 (4)°, indicates a (−)anti­periplanar conformation and torsion angle N1—C10—C11—Cl2 = 179.2 (3)°, indicates a (+)anti­periplanar conformation of the chloroethyl amino groups. Atom N1 deviates by −0.029 (3) Å from the benzene ring plane, while the carbonyl group (considering the plane C3/C7/O1) is inclined to the benzene ring by 1.7 (7)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and 30% probability displacement ellipsoids.

In the crystal, C—H⋯Cl and C—H⋯O hydrogen bonds link the mol­ecules, forming sheets parallel to (20[\overline{1}]) (Fig. 2[link] and Table 1[link]). The sheets are linked by C—H⋯π inter­actions, forming a three-dimensional framework (Fig. 3[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1i 0.93 2.81 3.715 (5) 164
C8—H8A⋯O1ii 0.97 2.51 3.367 (6) 147
C8—H8BCgiii 0.97 2.73 3.482 (5) 134
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+1]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z-1]; (iii) [x, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view normal to plane (20[\overline{1}]) of the crystal packing of the title compound, with hydrogen bonds shown as dashed lines (see Table 1[link]). For clarity, H atoms not involved in hydrogen bonding have been omitted.
[Figure 3]
Figure 3
A view, almost along the a axis, of the crystal packing of the title compound, with hydrogen bonds shown as dashed lines (see Table 1[link]). For clarity, H atoms not involved in the various inter­molecular inter­actions have been omitted.

Synthesis and crystallization

A flask containing dimethyl formaldehyde (1 equiv) was placed in an ice bath and (1.1 equiv) of phospho­rus oxychloride was added dropwise over 30 min with constant stirring at 273 K. Then N,N-bis­(2-chloro­eth­yl)aniline and 10 ml of di­methyl­formamide were added dropwise. After completion of the addition, the solution was stirred at 273 K for 15 min, then the reaction mixture was allowed to warm up to room temperature over a period of 3 h. After completion of the reaction, the mixture was poured into crushed ice, and a yellowish brown precipitate of the title compound formed. It was recrystallized from ethanol solution yielding violet block-like crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H13Cl2NO
Mr 246.12
Crystal system, space group Monoclinic, Cc
Temperature (K) 296
a, b, c (Å) 14.7725 (5), 9.3588 (3), 9.8079 (3)
β (°) 116.3080 (14)
V3) 1215.52 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.51
Crystal size (mm) 0.35 × 0.22 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.842, 0.951
No. of measured, independent and observed [I > 2σ(I)] reflections 4392, 2044, 1926
Rint 0.013
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.02
No. of reflections 2044
No. of parameters 136
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.29
Absolute structure Flack x determined using 848 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.08 (2)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(I) top
Crystal data top
C11H13Cl2NOF(000) = 512
Mr = 246.12Dx = 1.345 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 14.7725 (5) ÅCell parameters from 2835 reflections
b = 9.3588 (3) Åθ = 2.7–26.2°
c = 9.8079 (3) ŵ = 0.51 mm1
β = 116.3080 (14)°T = 296 K
V = 1215.52 (7) Å3Block, violet
Z = 40.35 × 0.22 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1926 reflections with I > 2σ(I)
φ and ω scansRint = 0.013
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.0°, θmin = 2.7°
Tmin = 0.842, Tmax = 0.951h = 1717
4392 measured reflectionsk = 1111
2044 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.7925P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2044 reflectionsΔρmax = 0.25 e Å3
136 parametersΔρmin = 0.29 e Å3
2 restraintsAbsolute structure: Flack x determined using 848 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6673 (3)0.3236 (4)0.2692 (4)0.0449 (8)
H10.65760.22520.26340.054*
C20.7354 (3)0.3839 (5)0.4026 (4)0.0514 (9)
H20.77040.32530.48630.062*
C30.7538 (3)0.5297 (5)0.4168 (4)0.0499 (9)
C40.7002 (3)0.6147 (4)0.2902 (4)0.0473 (9)
H40.71130.71280.29680.057*
C50.6309 (3)0.5565 (4)0.1552 (4)0.0432 (8)
H50.59610.61590.07210.052*
C60.6119 (3)0.4089 (4)0.1410 (4)0.0379 (7)
C70.8248 (4)0.5912 (6)0.5606 (5)0.0729 (13)
H70.85810.52790.64040.087*
C80.4888 (3)0.4367 (4)0.1290 (4)0.0476 (8)
H8A0.47170.37770.21840.057*
H8B0.53300.51270.13060.057*
C90.3941 (4)0.5004 (6)0.1334 (5)0.0649 (11)
H9A0.41100.56360.04720.078*
H9B0.35070.42520.12790.078*
C100.5119 (3)0.2010 (4)0.0036 (5)0.0549 (9)
H10A0.44200.19080.07820.066*
H10B0.51750.16890.09390.066*
C110.5779 (4)0.1099 (5)0.0490 (6)0.0673 (12)
H11A0.64800.12030.02480.081*
H11B0.57160.14030.14740.081*
Cl10.33067 (14)0.5973 (2)0.30549 (17)0.1116 (7)
Cl20.54009 (14)0.07305 (13)0.0583 (2)0.1026 (6)
N10.5415 (2)0.3503 (3)0.0072 (3)0.0485 (8)
O10.8448 (3)0.7153 (5)0.5867 (4)0.1042 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0492 (19)0.0381 (18)0.0434 (18)0.0023 (15)0.0169 (15)0.0023 (15)
C20.046 (2)0.064 (3)0.0378 (19)0.0090 (17)0.0129 (17)0.0093 (16)
C30.0434 (19)0.064 (2)0.0401 (18)0.0042 (18)0.0163 (15)0.0097 (18)
C40.054 (2)0.044 (2)0.049 (2)0.0157 (16)0.0269 (18)0.0147 (17)
C50.050 (2)0.0394 (19)0.0380 (18)0.0018 (15)0.0178 (17)0.0007 (15)
C60.0400 (16)0.0358 (17)0.0372 (16)0.0025 (14)0.0164 (14)0.0039 (13)
C70.061 (3)0.096 (4)0.049 (3)0.013 (3)0.014 (2)0.020 (2)
C80.051 (2)0.049 (2)0.0374 (17)0.0015 (16)0.0155 (16)0.0061 (15)
C90.057 (2)0.079 (3)0.057 (2)0.011 (2)0.0236 (19)0.007 (2)
C100.048 (2)0.048 (2)0.059 (2)0.0081 (17)0.0150 (17)0.0059 (18)
C110.065 (3)0.053 (2)0.078 (3)0.0001 (19)0.027 (2)0.011 (2)
Cl10.1303 (13)0.1108 (12)0.0692 (8)0.0702 (10)0.0221 (8)0.0210 (8)
Cl20.1109 (11)0.0428 (6)0.1303 (13)0.0013 (6)0.0317 (9)0.0175 (7)
N10.0513 (17)0.0396 (16)0.0401 (16)0.0029 (13)0.0071 (14)0.0009 (13)
O10.108 (3)0.109 (4)0.072 (2)0.041 (3)0.018 (2)0.040 (2)
Geometric parameters (Å, º) top
C1—C21.370 (5)C8—N11.457 (5)
C1—C61.405 (5)C8—C91.504 (6)
C1—H10.9300C8—H8A0.9700
C2—C31.385 (6)C8—H8B0.9700
C2—H20.9300C9—Cl11.774 (5)
C3—C41.389 (6)C9—H9A0.9700
C3—C71.453 (6)C9—H9B0.9700
C4—C51.377 (5)C10—N11.454 (5)
C4—H40.9300C10—C111.503 (6)
C5—C61.405 (5)C10—H10A0.9700
C5—H50.9300C10—H10B0.9700
C6—N11.377 (4)C11—Cl21.791 (5)
C7—O11.197 (7)C11—H11A0.9700
C7—H70.9300C11—H11B0.9700
C2—C1—C6120.7 (3)N1—C8—H8B109.4
C2—C1—H1119.6C9—C8—H8B109.4
C6—C1—H1119.6H8A—C8—H8B108.0
C1—C2—C3122.0 (3)C8—C9—Cl1108.9 (3)
C1—C2—H2119.0C8—C9—H9A109.9
C3—C2—H2119.0Cl1—C9—H9A109.9
C2—C3—C4117.8 (3)C8—C9—H9B109.9
C2—C3—C7120.8 (4)Cl1—C9—H9B109.9
C4—C3—C7121.4 (4)H9A—C9—H9B108.3
C5—C4—C3121.3 (4)N1—C10—C11110.7 (3)
C5—C4—H4119.4N1—C10—H10A109.5
C3—C4—H4119.4C11—C10—H10A109.5
C4—C5—C6120.9 (3)N1—C10—H10B109.5
C4—C5—H5119.5C11—C10—H10B109.5
C6—C5—H5119.5H10A—C10—H10B108.1
N1—C6—C5121.3 (3)C10—C11—Cl2109.2 (3)
N1—C6—C1121.4 (3)C10—C11—H11A109.8
C5—C6—C1117.3 (3)Cl2—C11—H11A109.8
O1—C7—C3126.6 (5)C10—C11—H11B109.8
O1—C7—H7116.7Cl2—C11—H11B109.8
C3—C7—H7116.7H11A—C11—H11B108.3
N1—C8—C9111.0 (3)C6—N1—C10121.9 (3)
N1—C8—H8A109.4C6—N1—C8121.6 (3)
C9—C8—H8A109.4C10—N1—C8116.5 (3)
C6—C1—C2—C30.9 (6)C4—C3—C7—O10.1 (8)
C1—C2—C3—C40.2 (6)N1—C8—C9—Cl1177.4 (3)
C1—C2—C3—C7178.6 (4)N1—C10—C11—Cl2179.2 (3)
C2—C3—C4—C50.2 (6)C5—C6—N1—C10172.2 (3)
C7—C3—C4—C5178.2 (4)C1—C6—N1—C107.4 (5)
C3—C4—C5—C60.1 (6)C5—C6—N1—C84.7 (5)
C4—C5—C6—N1178.8 (3)C1—C6—N1—C8175.8 (3)
C4—C5—C6—C10.8 (5)C11—C10—N1—C690.4 (4)
C2—C1—C6—N1178.4 (3)C11—C10—N1—C892.6 (4)
C2—C1—C6—C51.2 (5)C9—C8—N1—C688.8 (5)
C2—C3—C7—O1178.2 (5)C9—C8—N1—C1088.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1i0.932.813.715 (5)164
C8—H8A···O1ii0.972.513.367 (6)147
C8—H8B···Cgiii0.972.733.482 (5)134
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x1/2, y1/2, z1; (iii) x, y+1, z1/2.
 

Acknowledgements

The authors thank the Department of Chemistry, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationAmr, A. G., Mohamed, A. M., Mohamed, S. F., Abdel-Hafez, N. A. & Hammam, A. G. (2006). Bioorg. Med. Chem. 14, 5481–5488.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJansen, B. A. J., van der Zwan, J., den Dulk, H., Brouwer, J. & Reedijk, J. (2001). J. Med. Chem. 44, 245–249.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMurata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. & Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett. 13, 913–918.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShinkai, H., Ito, T., Iida, T., Kitao, Y., Yamada, H. & Uchida, I. (2000). J. Med. Chem. 43, 4667–4677.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds