organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(Benzo[d][1,3]dioxol-5-yl)-3-(2,3-di­chloro­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, bDepartment of Chemistry, GSSS Institute of Engineering and Technology for Women, Mysuru 570 016, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and dInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India
*Correspondence e-mail: naveen@ioe.uni-mysore.ac.in, ajaykumar@ycm.uni-mysore.ac.in

Edited by J. Simpson, University of Otago, New Zealand (Received 19 January 2017; accepted 20 January 2017; online 27 January 2017)

In the title compound, C16H10Cl2O3, the olefinic double bond adopts an E conformation [C—C=C—C torsion angle = −172.9 (3)°]. The dihedral angle between the benzodioxole and di­chloro­benzene rings is 5.57 (9)°. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯Cl hydrogen bonds, forming chains propagating along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones constitute the central cores for the construction of a wide range of bioactive compounds (Naveen et al., 2016[Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.]). As part of our ongoing work on such mol­ecules (Kumara et al., 2017[Kumara, K., Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2017). IUCrData, 2, x162029.]), we report the synthesis and crystal structure of the title compound here.

The structure of the mol­ecule is shown in Fig. 1[link]. The mol­ecule is nearly planar, with a dihedral angle of 5.57 (9)° between the benzodioxole and di­chloro benzene rings that are bridged by the olefinic double bond. This value is comparable with the value of 6.99 (6)° reported earlier between the aromatic rings in the related chalcone derivative (E)-1-(1,3-benzodioxol-5-yl)-3-(2,4,5-trimeth­oxy-phen­yl)prop-2-en-1-one. (Sunitha et al., 2017[Sunitha, V. M., Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Lokanath, N. K., Manivannan, V. & Manjunath, H. R. (2017). IUCrData, 2, x162026.]). The trans conformation about the C7=C8 double bond in the central enone group is confirmed by the C4—C7=C8—C9 torsion angle, −172.9 (3)°. The carbonyl group at C7 lies almost in the plane of the olefinic double bond and benzodioxole ring as indicated by the C3—C4—C7—O3 and O3—C7—C8—C9 torsion angles 6.2 (3)° and 7.6 (4)° respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for the non-H atoms are drawn at the 50% probability level.

In the crystal, the mol­ecules are linked via weak C—H⋯O and C—H⋯Cl hydrogen bonds, forming chains propagating along the c-axis direction (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cl1 0.93 2.58 3.033 (3) 110
C9—H9⋯O3 0.93 2.48 2.809 (4) 101
C14—H14⋯O1i 0.93 2.59 3.194 (3) 123
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing of the mol­ecules, viewed along the c axis, with hydrogen bonds shown as dashed lines.

Synthesis and crystallization

A mixture of 2,3-di­chloro­benzaldehyde (5 mmol), 1-(benzo[d][1,3]dioxol-5-yl)ethanone (5 mmol) and sodium hydroxide (5 mmol) in methanol (25 ml) was stirred at room temperature for 3 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was poured into ice-cold water and kept in a refrigerator for 18 h. The solid that formed was filtered, and washed with cold hydro­chloric acid (5%). Pure white crystals were obtained by slow evaporation from a methanol solution (yield 88%, m.p. 401–402 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table. 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H10Cl2O3
Mr 321.14
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.1854 (7), 11.0820 (8), 12.2077 (9)
β (°) 99.068 (3)
V3) 1360.72 (17)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.36
Crystal size (mm) 0.28 × 0.26 × 0.24
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.375, 0.421
No. of measured, independent and observed [I > 2σ(I)] reflections 8712, 2232, 2086
Rint 0.048
(sin θ/λ)max−1) 0.586
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.158, 1.03
No. of reflections 2232
No. of parameters 190
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.38
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(E)-1-(Benzo[d][1,3]dioxol-5-yl)-3-(2,3-dichlorophenyl)prop-2-en-1-one top
Crystal data top
C16H10Cl2O3F(000) = 656
Mr = 321.14Dx = 1.568 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2086 reflections
a = 10.1854 (7) Åθ = 4.4–64.5°
b = 11.0820 (8) ŵ = 4.36 mm1
c = 12.2077 (9) ÅT = 296 K
β = 99.068 (3)°Rectangle, white
V = 1360.72 (17) Å30.28 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2232 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2086 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.048
Detector resolution: 18.4 pixels mm-1θmax = 64.5°, θmin = 4.4°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1012
Tmin = 0.375, Tmax = 0.421l = 1413
8712 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1218P)2 + 0.554P]
where P = (Fo2 + 2Fc2)/3
2232 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13750 (6)0.03536 (6)0.24874 (5)0.0316 (3)
Cl20.37087 (6)0.00563 (6)0.38206 (6)0.0377 (3)
O10.76711 (18)0.39765 (18)0.31535 (15)0.0353 (6)
O20.80348 (18)0.45912 (17)0.49834 (15)0.0322 (6)
O30.3035 (2)0.20086 (19)0.24062 (16)0.0393 (7)
C10.8544 (3)0.4624 (2)0.3945 (2)0.0304 (8)
C20.6590 (2)0.3683 (2)0.3649 (2)0.0260 (7)
C30.5445 (2)0.3131 (2)0.3184 (2)0.0272 (8)
C40.4480 (2)0.2919 (2)0.3881 (2)0.0261 (7)
C50.4743 (3)0.3250 (2)0.4999 (2)0.0273 (7)
C60.5927 (2)0.3814 (2)0.5459 (2)0.0282 (7)
C70.3208 (3)0.2367 (2)0.3373 (2)0.0292 (8)
C80.2132 (3)0.2262 (3)0.4053 (2)0.0353 (8)
C90.1024 (3)0.1677 (2)0.3710 (2)0.0287 (8)
C100.0084 (2)0.1487 (2)0.4320 (2)0.0252 (7)
C110.1248 (2)0.0878 (2)0.3834 (2)0.0255 (7)
C120.2286 (2)0.0698 (2)0.4426 (2)0.0273 (8)
C130.2211 (3)0.1102 (2)0.5504 (2)0.0311 (8)
C140.1074 (3)0.1695 (2)0.5994 (2)0.0311 (8)
C150.0023 (3)0.1880 (2)0.5422 (2)0.0284 (8)
C160.6823 (2)0.4034 (2)0.4754 (2)0.0256 (7)
H10.861100.545200.370400.0360*
H30.942300.426400.403600.0360*
H50.410900.308800.545000.0330*
H60.610000.403000.620400.0340*
H80.224500.262500.474900.0420*
H90.093400.134700.300200.0340*
H100.530100.290200.244200.0330*
H130.291300.097700.589400.0370*
H140.101600.197300.671800.0370*
H150.073600.227200.577200.0340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0261 (4)0.0429 (5)0.0243 (4)0.0032 (2)0.0007 (3)0.0032 (2)
Cl20.0241 (4)0.0427 (5)0.0458 (5)0.0060 (3)0.0038 (3)0.0033 (3)
O10.0295 (10)0.0491 (11)0.0295 (10)0.0069 (8)0.0113 (8)0.0014 (8)
O20.0233 (10)0.0450 (11)0.0277 (10)0.0076 (8)0.0026 (8)0.0003 (8)
O30.0365 (11)0.0494 (12)0.0314 (11)0.0144 (9)0.0039 (8)0.0068 (9)
C10.0240 (13)0.0345 (14)0.0344 (15)0.0024 (11)0.0103 (11)0.0075 (11)
C20.0224 (12)0.0284 (13)0.0274 (12)0.0036 (10)0.0045 (10)0.0040 (10)
C30.0279 (13)0.0290 (13)0.0246 (13)0.0002 (10)0.0042 (10)0.0016 (10)
C40.0240 (13)0.0234 (12)0.0303 (13)0.0023 (10)0.0027 (10)0.0005 (10)
C50.0231 (12)0.0290 (13)0.0307 (13)0.0012 (10)0.0069 (10)0.0051 (10)
C60.0273 (13)0.0342 (13)0.0229 (12)0.0005 (11)0.0037 (10)0.0023 (10)
C70.0282 (14)0.0260 (12)0.0334 (14)0.0007 (10)0.0048 (11)0.0015 (10)
C80.0293 (14)0.0390 (15)0.0387 (15)0.0037 (12)0.0092 (12)0.0097 (12)
C90.0308 (14)0.0293 (13)0.0245 (12)0.0035 (11)0.0004 (11)0.0002 (10)
C100.0258 (13)0.0201 (12)0.0286 (13)0.0010 (10)0.0013 (10)0.0026 (10)
C110.0268 (13)0.0233 (12)0.0245 (12)0.0034 (10)0.0015 (10)0.0008 (10)
C120.0218 (13)0.0216 (12)0.0369 (14)0.0021 (10)0.0005 (11)0.0008 (10)
C130.0310 (14)0.0275 (13)0.0365 (14)0.0056 (11)0.0103 (11)0.0025 (11)
C140.0392 (15)0.0249 (13)0.0302 (13)0.0001 (11)0.0086 (11)0.0031 (10)
C150.0320 (14)0.0237 (13)0.0280 (13)0.0030 (10)0.0001 (10)0.0003 (10)
C160.0217 (12)0.0251 (12)0.0286 (13)0.0015 (10)0.0002 (10)0.0043 (10)
Geometric parameters (Å, º) top
Cl1—C111.729 (2)C10—C111.411 (3)
Cl2—C121.734 (2)C10—C151.406 (3)
O1—C11.403 (3)C11—C121.386 (3)
O1—C21.376 (3)C12—C131.381 (3)
O2—C11.444 (3)C13—C141.383 (4)
O2—C161.369 (3)C14—C151.383 (4)
O3—C71.231 (3)C1—H10.9700
C2—C31.359 (3)C1—H30.9700
C2—C161.388 (3)C3—H100.9300
C3—C41.417 (3)C5—H50.9300
C4—C51.398 (3)C6—H60.9300
C4—C71.478 (4)C8—H80.9300
C5—C61.395 (4)C9—H90.9300
C6—C161.371 (3)C13—H130.9300
C7—C81.480 (4)C14—H140.9300
C8—C91.312 (4)C15—H150.9300
C9—C101.462 (4)
C1—O1—C2106.40 (19)C13—C14—C15121.0 (2)
C1—O2—C16105.59 (19)C10—C15—C14121.1 (2)
O1—C1—O2108.4 (2)O2—C16—C2109.62 (19)
O1—C2—C3128.0 (2)O2—C16—C6128.3 (2)
O1—C2—C16109.56 (19)C2—C16—C6122.1 (2)
C3—C2—C16122.4 (2)O1—C1—H1110.00
C2—C3—C4117.0 (2)O1—C1—H3110.00
C3—C4—C5119.9 (2)O2—C1—H1110.00
C3—C4—C7117.5 (2)O2—C1—H3110.00
C5—C4—C7122.6 (2)H1—C1—H3108.00
C4—C5—C6122.1 (2)C2—C3—H10122.00
C5—C6—C16116.5 (2)C4—C3—H10121.00
O3—C7—C4121.3 (3)C4—C5—H5119.00
O3—C7—C8120.4 (3)C6—C5—H5119.00
C4—C7—C8118.4 (2)C5—C6—H6122.00
C7—C8—C9122.4 (2)C16—C6—H6122.00
C8—C9—C10127.1 (2)C7—C8—H8119.00
C9—C10—C11121.3 (2)C9—C8—H8119.00
C9—C10—C15121.4 (2)C8—C9—H9116.00
C11—C10—C15117.3 (2)C10—C9—H9116.00
Cl1—C11—C10119.50 (17)C12—C13—H13121.00
Cl1—C11—C12119.90 (17)C14—C13—H13121.00
C10—C11—C12120.6 (2)C13—C14—H14120.00
Cl2—C12—C11120.14 (18)C15—C14—H14120.00
Cl2—C12—C13118.65 (19)C10—C15—H15120.00
C11—C12—C13121.2 (2)C14—C15—H15119.00
C12—C13—C14118.9 (2)
C2—O1—C1—O26.8 (2)C5—C6—C16—O2178.6 (2)
C1—O1—C2—C3174.9 (2)C5—C6—C16—C22.0 (3)
C1—O1—C2—C165.4 (3)O3—C7—C8—C97.6 (4)
C16—O2—C1—O15.7 (2)C4—C7—C8—C9172.9 (3)
C1—O2—C16—C22.4 (2)C7—C8—C9—C10178.1 (2)
C1—O2—C16—C6178.1 (2)C8—C9—C10—C11177.4 (3)
O1—C2—C3—C4179.5 (2)C8—C9—C10—C154.0 (4)
C16—C2—C3—C40.2 (3)C9—C10—C11—Cl10.4 (3)
O1—C2—C16—O21.8 (3)C9—C10—C11—C12179.6 (2)
O1—C2—C16—C6177.7 (2)C15—C10—C11—Cl1179.11 (17)
C3—C2—C16—O2178.5 (2)C15—C10—C11—C120.9 (3)
C3—C2—C16—C62.0 (4)C9—C10—C15—C14179.9 (2)
C2—C3—C4—C51.5 (3)C11—C10—C15—C141.2 (3)
C2—C3—C4—C7177.4 (2)Cl1—C11—C12—Cl20.2 (3)
C3—C4—C5—C61.4 (3)Cl1—C11—C12—C13179.73 (18)
C7—C4—C5—C6177.4 (2)C10—C11—C12—Cl2179.78 (17)
C3—C4—C7—O36.2 (3)C10—C11—C12—C130.3 (3)
C3—C4—C7—C8173.3 (2)Cl2—C12—C13—C14179.45 (18)
C5—C4—C7—O3175.0 (2)C11—C12—C13—C140.1 (3)
C5—C4—C7—C85.5 (3)C12—C13—C14—C150.3 (4)
C4—C5—C6—C160.3 (3)C13—C14—C15—C100.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl10.932.583.033 (3)110
C9—H9···O30.932.482.809 (4)101
C14—H14···O1i0.932.593.194 (3)123
Symmetry code: (i) x1, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKumara, K., Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2017). IUCrData, 2, x162029.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunitha, V. M., Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Lokanath, N. K., Manivannan, V. & Manjunath, H. R. (2017). IUCrData, 2, x162026.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds