organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-(2,5-dioxo-4,4-di­phenyl­imidazolidin-1-yl)acetate

CROSSMARK_Color_square_no_text.svg

aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: rakrad@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 16 January 2017; accepted 19 January 2017; online 27 January 2017)

The five-membered ring of the title compound, C19H18N2O4, adopts an envelope conformation. In the crystal, pairwise N—H⋯O hydrogen bonds form centrosymmetric dimers which are connected into chains parallel to the c-axis direction by pairwise C—H⋯O hydrogen bonds. A second set of C—H⋯O hydrogen bonds links these chains into sheets oriented parallel to (100). A combination of additional C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions combine the sheets into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

An enormous variety of hydantoin derivatives with varied pharmaceutical and medicinal applications, have been reported (Weichet, 1974[Weichet, B. L. (1974). J. Czech. Patent, 151, 744-747.]; Havera & Strycker, 1976[Havera, H. J. & Strycker, W. G. (1976). US Patent 3 904 909.]; Khodair et al., 1997[Khodair, A. I., el-Subbagh, H. I. & el-Emam, A. A. (1997). Boll. Chim. Farm. 136, 561-567.]; Thenmozhiyal et al., 2004[Thenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527-1535.]). As a continuation of our research into hydantoin derivatives (Akrad et al. 2017[Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.]), the title compound (Fig. 1[link]) was prepared and its mol­ecular and crystal structure is reported here.

[Figure 1]
Figure 1
The structure of the title mol­ecule, showing the atom-labeling scheme and 50% probability ellipsoids.

A puckering analysis of the five-membered ring gave the parameters Q(2) = 0.0712 (16) Å and φ(2) = 279.3 (13)°. The conformation of the ring is best described as an envelope on C1. The dihedral angle between the C4–C9 benzene ring and the mean plane of the five-membered ring is 80.56 (6)°, while the corresponding angle for the C10–C15 ring is 61.79 (4)°.

In the crystal, the mol­ecules form centrosymmetric dimers through complementary N1—H1⋯O2 hydrogen bonds. The dimers are linked into chains running parallel to the c-axis direction by pairwise C15—H15⋯O1 hydrogen bonds (Table 1[link] and Figs. 2[link] and 3[link]). The chains are formed into sheets oriented parallel to (100) by C16—H16A⋯O4 hydrogen bonds (Table 2[link] and Figs. 2[link] and 3[link]) while the sheets are associated by a combination of C18—H18A⋯O3 hydrogen bonds and C7—H7⋯π(Cg3) inter­actions (Table 1[link] and Figs. 2[link] and 3[link]). The packing is further aided by C12—H12⋯π(Cg2) and C19—H19⋯π(Cg2) (inter­actions (Table 2[link] and Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C4–C9 and C10–C15 benzene rings, respectively,

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.91 (2) 1.91 (2) 2.8203 (17) 172.6 (17)
C15—H15⋯O1ii 0.954 (18) 2.591 (18) 3.332 (2) 134.8 (14)
C16—H16A⋯O4iii 0.971 (18) 2.653 (19) 3.415 (2) 135.7 (13)
C18—H18A⋯O3iv 0.977 (18) 2.658 (19) 3.633 (2) 175.9 (14)
C7—H7⋯Cg3v 1.01 (2) 2.976 (18) 3.6661 (19) 126.6 (13)
C12—H12⋯Cg2vi 0.996 (18) 2.701 (18) 3.6673 (19) 163.1 (18)
C19—H19ACg2 1.03 (2) 2.83 (2) 3.572 (2) 129.0 (16)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) -x+2, -y, -z+1; (v) x+1, y, z; (vi) -x+1, -y+2, -z.

Table 2
Experimental details

Crystal data
Chemical formula C19H18N2O4
Mr 338.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.5041 (5), 8.6959 (5), 12.5024 (8)
α, β, γ (°) 71.002 (1), 88.165 (1), 72.572 (1)
V3) 831.87 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.43 × 0.29 × 0.26
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.96, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 31786, 31786, 21954
Rint 0.031
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.130, 1.06
No. of reflections 31786
No. of parameters 299
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.51, −0.32
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).
[Figure 2]
Figure 2
Details of the inter­molecular inter­actions. N—H⋯O, C—H⋯O and C—H⋯π(ring) inter­actions are shown as blue, black and orange dotted lines, respectively.
[Figure 3]
Figure 3
The crystal packing, viewed along the b axis. The color code for the inter­molecular inter­actions is similar to that given in Fig. 2[link].

Synthesis and crystallization

To a solution of 5,5-di­phenyl­imidazolidine-2,4-dione (3.96 mol, 1 g) in 20 ml of ethanol was added ethyl bromo­acetate (3.96 mol, 438 mm l), K2CO3 (3.96 mol) and a catalytic amount of tetra­butyl­ammonium bromide. The mixture was stirred at room temperature for 24 h. Progress was monitored by TLC and, when complete, the solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol solution to afford colourless block-like crystals of the title compound (yield 67%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Analysis of the 1461 reflections having I/σ(I) > 13 and chosen from the full data set with CELL_NOW (Sheldrick, 2008a[Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany.]) showed the crystal to belong to the triclinic system and to consist of two major and at least two minor components. Since 91% of the reflections could be indexed on the two major components, it was decided to treat the crystal as having two components. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Ethyl 2-(2,5-dioxo-4,4-diphenylimidazolidin-1-yl)acetate top
Crystal data top
C19H18N2O4Z = 2
Mr = 338.35F(000) = 356
Triclinic, P1Dx = 1.351 Mg m3
a = 8.5041 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6959 (5) ÅCell parameters from 9879 reflections
c = 12.5024 (8) Åθ = 2.6–29.1°
α = 71.002 (1)°µ = 0.10 mm1
β = 88.165 (1)°T = 100 K
γ = 72.572 (1)°Column, colourless
V = 831.87 (9) Å30.43 × 0.29 × 0.26 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
31786 independent reflections
Radiation source: fine-focus sealed tube21954 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.3333 pixels mm-1θmax = 29.2°, θmin = 1.7°
φ and ω scansh = 1111
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1111
Tmin = 0.96, Tmax = 0.97l = 1717
31786 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.130All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.0554P]
where P = (Fo2 + 2Fc2)/3
31786 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 7.5 sec/frame. Analysis of 1461 reflections having I/σ(I) > 13 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to consist of two major and at least two minor components. Since 91% of the reflections could be indexed on the two major components, it was decided to treat the crystal as having tw components. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The structure was refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66938 (14)0.42374 (14)0.40959 (9)0.0212 (3)
O20.48505 (14)0.30571 (14)0.11562 (9)0.0236 (3)
O30.85782 (14)0.08216 (15)0.34383 (10)0.0273 (3)
O40.73722 (13)0.10111 (13)0.46031 (9)0.0205 (3)
N10.54197 (16)0.54676 (16)0.12269 (11)0.0163 (3)
H10.534 (2)0.603 (2)0.0466 (17)0.033 (5)*
N20.55850 (16)0.33561 (16)0.28322 (10)0.0168 (3)
C10.61488 (18)0.44787 (19)0.31540 (12)0.0160 (3)
C20.52414 (18)0.39103 (19)0.16561 (13)0.0165 (3)
C30.59387 (18)0.60646 (19)0.20887 (12)0.0143 (3)
C40.75973 (18)0.64172 (19)0.18369 (12)0.0157 (3)
C50.8844 (2)0.5282 (2)0.14690 (14)0.0207 (3)
H50.862 (2)0.428 (2)0.1372 (15)0.025 (5)*
C61.0353 (2)0.5584 (2)0.12179 (14)0.0249 (4)
H61.121 (2)0.476 (2)0.0956 (15)0.029 (5)*
C71.0626 (2)0.7013 (2)0.13345 (15)0.0270 (4)
H71.171 (2)0.725 (2)0.1153 (16)0.036 (5)*
C80.9406 (2)0.8130 (2)0.17129 (15)0.0272 (4)
H80.956 (2)0.912 (2)0.1786 (16)0.035 (5)*
C90.7894 (2)0.7831 (2)0.19693 (14)0.0218 (4)
H90.702 (2)0.864 (2)0.2216 (15)0.026 (5)*
C100.45633 (18)0.76081 (19)0.21919 (13)0.0151 (3)
C110.3922 (2)0.8989 (2)0.12049 (14)0.0190 (3)
H110.437 (2)0.894 (2)0.0486 (15)0.021 (4)*
C120.2686 (2)1.0425 (2)0.12466 (15)0.0219 (4)
H120.222 (2)1.140 (2)0.0536 (15)0.027 (5)*
C130.2049 (2)1.0487 (2)0.22742 (14)0.0218 (4)
H130.117 (2)1.150 (2)0.2302 (14)0.025 (5)*
C140.2662 (2)0.9111 (2)0.32521 (15)0.0223 (4)
H140.220 (2)0.911 (2)0.3975 (16)0.028 (5)*
C150.3926 (2)0.7678 (2)0.32182 (14)0.0191 (3)
H150.436 (2)0.676 (2)0.3905 (15)0.024 (5)*
C160.5624 (2)0.1679 (2)0.35767 (14)0.0185 (3)
H16A0.515 (2)0.177 (2)0.4279 (16)0.025 (5)*
H16B0.497 (2)0.126 (2)0.3197 (15)0.026 (5)*
C170.73753 (19)0.0476 (2)0.38441 (13)0.0180 (3)
C180.8993 (2)0.2297 (2)0.50004 (16)0.0238 (4)
H18A0.964 (2)0.185 (2)0.5386 (15)0.026 (5)*
H18B0.955 (2)0.249 (2)0.4347 (16)0.027 (5)*
C190.8664 (2)0.3865 (2)0.57850 (17)0.0293 (4)
H19A0.977 (3)0.481 (3)0.6116 (17)0.039 (6)*
H19B0.801 (3)0.364 (2)0.6446 (17)0.039 (6)*
H19C0.799 (3)0.430 (2)0.5386 (17)0.039 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0269 (6)0.0215 (6)0.0139 (6)0.0064 (5)0.0011 (4)0.0048 (5)
O20.0338 (7)0.0224 (6)0.0201 (6)0.0164 (5)0.0009 (5)0.0072 (5)
O30.0228 (6)0.0235 (7)0.0349 (7)0.0082 (5)0.0108 (5)0.0087 (5)
O40.0216 (6)0.0148 (6)0.0212 (6)0.0043 (4)0.0010 (4)0.0018 (5)
N10.0224 (7)0.0167 (7)0.0116 (6)0.0089 (5)0.0002 (5)0.0042 (5)
N20.0217 (7)0.0142 (7)0.0142 (6)0.0080 (5)0.0010 (5)0.0020 (5)
C10.0159 (7)0.0163 (8)0.0150 (7)0.0040 (6)0.0029 (5)0.0054 (6)
C20.0164 (7)0.0174 (8)0.0161 (7)0.0066 (6)0.0012 (6)0.0048 (6)
C30.0177 (7)0.0153 (8)0.0112 (7)0.0070 (6)0.0011 (5)0.0046 (6)
C40.0183 (7)0.0176 (8)0.0113 (7)0.0073 (6)0.0006 (5)0.0031 (6)
C50.0216 (8)0.0192 (8)0.0209 (8)0.0065 (6)0.0015 (6)0.0060 (7)
C60.0190 (8)0.0295 (10)0.0241 (9)0.0048 (7)0.0028 (6)0.0085 (8)
C70.0197 (8)0.0365 (11)0.0258 (9)0.0144 (8)0.0017 (7)0.0064 (8)
C80.0271 (9)0.0302 (10)0.0321 (10)0.0171 (8)0.0018 (7)0.0130 (8)
C90.0218 (8)0.0254 (9)0.0237 (9)0.0103 (7)0.0033 (6)0.0123 (7)
C100.0155 (7)0.0146 (8)0.0173 (8)0.0077 (6)0.0012 (5)0.0051 (6)
C110.0216 (8)0.0188 (8)0.0166 (8)0.0087 (6)0.0035 (6)0.0036 (7)
C120.0219 (8)0.0173 (8)0.0238 (9)0.0074 (6)0.0002 (6)0.0019 (7)
C130.0179 (8)0.0182 (8)0.0311 (9)0.0058 (6)0.0027 (7)0.0103 (7)
C140.0222 (8)0.0260 (9)0.0221 (9)0.0085 (7)0.0054 (6)0.0119 (7)
C150.0217 (8)0.0203 (8)0.0154 (8)0.0069 (6)0.0010 (6)0.0055 (7)
C160.0204 (8)0.0153 (8)0.0182 (8)0.0077 (6)0.0027 (6)0.0014 (6)
C170.0224 (8)0.0157 (8)0.0176 (8)0.0064 (6)0.0032 (6)0.0073 (6)
C180.0218 (8)0.0188 (9)0.0272 (9)0.0006 (7)0.0012 (7)0.0077 (7)
C190.0322 (10)0.0221 (9)0.0264 (10)0.0013 (8)0.0018 (8)0.0047 (8)
Geometric parameters (Å, º) top
O1—C11.2088 (17)C8—H80.943 (19)
O2—C21.2307 (18)C9—H90.978 (18)
O3—C171.2025 (19)C10—C151.389 (2)
O4—C171.3325 (19)C10—C111.396 (2)
O4—C181.4681 (19)C11—C121.386 (2)
N1—C21.3378 (19)C11—H110.975 (18)
N1—C31.4687 (18)C12—C131.389 (2)
N1—H10.91 (2)C12—H120.996 (18)
N2—C11.3760 (19)C13—C141.383 (2)
N2—C21.4005 (19)C13—H130.978 (18)
N2—C161.4433 (19)C14—C151.392 (2)
C1—C31.543 (2)C14—H140.973 (19)
C3—C101.533 (2)C15—H150.954 (18)
C3—C41.533 (2)C16—C171.515 (2)
C4—C91.387 (2)C16—H16A0.971 (18)
C4—C51.395 (2)C16—H16B0.958 (18)
C5—C61.392 (2)C18—C191.497 (3)
C5—H50.989 (18)C18—H18A0.977 (18)
C6—C71.383 (2)C18—H18B0.968 (19)
C6—H60.985 (19)C19—H19A1.03 (2)
C7—C81.381 (3)C19—H19B1.02 (2)
C7—H71.01 (2)C19—H19C0.99 (2)
C8—C91.393 (2)
C17—O4—C18116.34 (13)C15—C10—C3122.84 (13)
C2—N1—C3113.27 (13)C11—C10—C3118.04 (14)
C2—N1—H1122.0 (12)C12—C11—C10120.65 (15)
C3—N1—H1124.3 (12)C12—C11—H11120.4 (10)
C1—N2—C2111.55 (12)C10—C11—H11118.9 (10)
C1—N2—C16124.09 (13)C11—C12—C13120.01 (15)
C2—N2—C16123.48 (13)C11—C12—H12120.1 (10)
O1—C1—N2125.56 (14)C13—C12—H12119.8 (10)
O1—C1—C3127.87 (14)C14—C13—C12119.56 (16)
N2—C1—C3106.56 (12)C14—C13—H13120.5 (10)
O2—C2—N1128.79 (14)C12—C13—H13120.0 (10)
O2—C2—N2123.61 (14)C13—C14—C15120.65 (16)
N1—C2—N2107.59 (13)C13—C14—H14120.7 (11)
N1—C3—C10109.98 (11)C15—C14—H14118.6 (11)
N1—C3—C4110.84 (12)C10—C15—C14120.00 (15)
C10—C3—C4113.22 (12)C10—C15—H15120.4 (11)
N1—C3—C1100.42 (11)C14—C15—H15119.6 (11)
C10—C3—C1111.28 (12)N2—C16—C17111.31 (13)
C4—C3—C1110.38 (12)N2—C16—H16A109.3 (11)
C9—C4—C5119.09 (14)C17—C16—H16A109.1 (10)
C9—C4—C3121.76 (14)N2—C16—H16B107.2 (11)
C5—C4—C3119.15 (13)C17—C16—H16B110.0 (11)
C6—C5—C4120.39 (16)H16A—C16—H16B109.8 (15)
C6—C5—H5121.0 (11)O3—C17—O4125.56 (15)
C4—C5—H5118.6 (11)O3—C17—C16125.00 (15)
C7—C6—C5120.01 (17)O4—C17—C16109.44 (13)
C7—C6—H6121.3 (11)O4—C18—C19106.36 (15)
C5—C6—H6118.7 (11)O4—C18—H18A108.3 (11)
C8—C7—C6119.93 (16)C19—C18—H18A112.0 (11)
C8—C7—H7119.3 (11)O4—C18—H18B108.4 (11)
C6—C7—H7120.8 (11)C19—C18—H18B112.7 (10)
C7—C8—C9120.29 (17)H18A—C18—H18B108.9 (15)
C7—C8—H8121.1 (12)C18—C19—H19A109.9 (11)
C9—C8—H8118.6 (12)C18—C19—H19B112.2 (11)
C4—C9—C8120.27 (16)H19A—C19—H19B108.1 (16)
C4—C9—H9119.2 (10)C18—C19—H19C111.1 (12)
C8—C9—H9120.5 (10)H19A—C19—H19C109.3 (16)
C15—C10—C11119.11 (14)H19B—C19—H19C106.1 (17)
C2—N2—C1—O1172.06 (14)C4—C5—C6—C70.1 (2)
C16—N2—C1—O12.5 (2)C5—C6—C7—C80.8 (3)
C2—N2—C1—C38.07 (16)C6—C7—C8—C90.5 (3)
C16—N2—C1—C3177.66 (13)C5—C4—C9—C81.4 (2)
C3—N1—C2—O2178.70 (15)C3—C4—C9—C8178.82 (14)
C3—N1—C2—N21.34 (17)C7—C8—C9—C40.6 (3)
C1—N2—C2—O2173.90 (14)N1—C3—C10—C15126.47 (15)
C16—N2—C2—O24.2 (2)C4—C3—C10—C15108.93 (16)
C1—N2—C2—N16.13 (17)C1—C3—C10—C1516.09 (19)
C16—N2—C2—N1175.80 (13)N1—C3—C10—C1152.87 (17)
C2—N1—C3—C10114.14 (14)C4—C3—C10—C1171.73 (17)
C2—N1—C3—C4119.90 (14)C1—C3—C10—C11163.25 (13)
C2—N1—C3—C13.23 (16)C15—C10—C11—C121.1 (2)
O1—C1—C3—N1173.53 (15)C3—C10—C11—C12179.49 (13)
N2—C1—C3—N16.61 (14)C10—C11—C12—C131.3 (2)
O1—C1—C3—C1070.07 (19)C11—C12—C13—C140.3 (2)
N2—C1—C3—C10109.79 (13)C12—C13—C14—C150.9 (2)
O1—C1—C3—C456.5 (2)C11—C10—C15—C140.1 (2)
N2—C1—C3—C4123.62 (13)C3—C10—C15—C14179.25 (14)
N1—C3—C4—C9138.84 (14)C13—C14—C15—C101.1 (2)
C10—C3—C4—C914.70 (19)C1—N2—C16—C1770.75 (19)
C1—C3—C4—C9110.80 (16)C2—N2—C16—C1797.63 (17)
N1—C3—C4—C541.42 (18)C18—O4—C17—O32.5 (2)
C10—C3—C4—C5165.55 (13)C18—O4—C17—C16176.91 (13)
C1—C3—C4—C568.94 (17)N2—C16—C17—O34.4 (2)
C9—C4—C5—C61.2 (2)N2—C16—C17—O4174.99 (12)
C3—C4—C5—C6179.04 (14)C17—O4—C18—C19176.90 (14)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C4–C9 and C10–C15 benzene rings, respectively,
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.91 (2)1.91 (2)2.8203 (17)172.6 (17)
C15—H15···O1ii0.954 (18)2.591 (18)3.332 (2)134.8 (14)
C16—H16A···O4iii0.971 (18)2.653 (19)3.415 (2)135.7 (13)
C18—H18A···O3iv0.977 (18)2.658 (19)3.633 (2)175.9 (14)
C7—H7···Cg3v1.01 (2)2.976 (18)3.6661 (19)126.6 (13)
C12—H12···Cg2vi0.996 (18)2.701 (18)3.6673 (19)163.1 (18)
C19—H19A···Cg21.03 (2)2.83 (2)3.572 (2)129.0 (16)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+2, y, z+1; (v) x+1, y, z; (vi) x+1, y+2, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAkrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHavera, H. J. & Strycker, W. G. (1976). US Patent 3 904 909.  Google Scholar
First citationKhodair, A. I., el-Subbagh, H. I. & el-Emam, A. A. (1997). Boll. Chim. Farm. 136, 561–567.  CAS Google Scholar
First citationSheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527–1535.  Web of Science CrossRef CAS Google Scholar
First citationWeichet, B. L. (1974). J. Czech. Patent, 151, 744–747.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds