organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Ethyl-4-phenyl-1,5-benzodiazepine-2-thione

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Bio Organique Appliqué, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cUFR Environnement, UNIV Jean Lorougnon Guédé, BP 150, Daloa, Ivory Coast, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: ahabchanenoureddine@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 10 December 2016; accepted 15 December 2016; online 6 January 2017)

In the title compound, C17H16N2S, the seven-membered ring adopts a boat conformation. The two aromatic rings are inclined at an angle of 34.7 (1)° to one another. The mol­ecules pack in helical chains running along the c-axis direction through C—H⋯S hydrogen bonds. These are further linked into layers parallel to (100) by weak C—H⋯π(ring) inter­actions. The structure was refined as a two-component inversion twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,5-Benzodiazepines have attracted attention as an important class of heterocyclic mol­ecules in medicinal chemistry as drugs and pharmaceuticals. They are widely used as anti­convulsant (Narayana et al., 2006[Narayana, B., Vijaya Raj, K. K., Ashalatha, B. V. & Kumari, N. S. (2006). Eur. J. Med. Chem. 41, 417-422.]), anti-HIV-1 (Di Braccio et al., 2001[Di Braccio, M., Grossi, G. C., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935-949.]), anti­microbial (Kumar & Joshi, 2007[Kumar, R. & Joshi, Y. C. (2007). Arkivoc, pp. 142-149.]) and anti­tumor agents (Kamal et al., 2008[Kamal, A., Shankaraiah, N., Prabhakar, S., Reddy, C. R., Markandeya, N., Reddy, K. L. & Devaiah, X. (2008). Bioorg. Med. Chem. Lett. 18, 2434-2439.]). They are also employed as inter­mediates in the syntheses of several heterocyclic compounds (Minnih et al., 2014[Minnih, M. S., Kandri Rodi, Y. & Essassi, E. M. (2014). J. Mar. Chim. Heterocycl. 13, 1-24.]; Ahabchane et al., 1999[Ahabchane, A. H., Keita, A. & Essassi, E. M. (1999). Compt. Rend. Ser. IIC, 2, 519-523.]).

The dihedral angle between the mean planes of the C1–C6 and C10–C15 aromatic rings is 34.7 (1) Å. Puckering analysis of the seven-membered ring (Fig. 1[link]) gave the parameters Q(1) = 0.876 (3) Å, Q(3) = 0.239 (3) Å, φ(2) = 206.8 (2)° and φ(3) = 308.0 (7) and a total puckering amplitude of 0.908 (3) Å. This ring is in a boat conformation.

[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 25% probability ellipsoids.

In the crystal, mol­ecules form helical chains running along the c-axis direction through C13—H13⋯S1 hydrogen bonds (Table 1[link], Figs. 2[link] and 3[link]). These chains are linked into layers parallel to (100) by weak C8—H8Bπ(ring) inter­actions (Table 1[link], and Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCg1i 0.97 2.92 3.810 (3) 154
C13—H13⋯S1ii 0.97 2.86 3.706 (4) 152
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+2, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions [symmetry codes: (i) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (ii) [{3\over 2}] − x, 2 − y, [{1\over 2}] + z], with the C—H⋯S and C—H⋯π(ring) inter­actions shown, respectively, as black and orange dashed lines.
[Figure 3]
Figure 3
Packing viewed along the a axis. The depiction of the inter­molecular inter­actions is the same as in Fig. 2[link].

Synthesis and crystallization

To a solution of 1-ethyl-4-phenyl-1,5-benzodiazepin-2-one (0.80 g, 3.04 mmol) in 20 ml of pyridine was added phospho­rus penta­sulfide (0.84 g, 3.65 mmol). The mixture was refluxed for 4 h and the solvent was then evaporated under reduced pressure. The precipitate formed was washed with hot water. The residue obtained was crystallized from ethanol to afford crystals of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as a two-component inversion twin.

Table 2
Experimental details

Crystal data
Chemical formula C17H16N2S
Mr 280.38
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 8.4001 (8), 9.6239 (9), 18.0037 (18)
V3) 1455.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.32 × 0.14 × 0.05
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.83, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 13778, 3544, 2226
Rint 0.050
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.117, 1.02
No. of reflections 3544
No. of parameters 183
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.14
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.44 (13)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-Ethyl-4-phenyl-1,5-benzodiazepine-2-thione top
Crystal data top
C17H16N2SDx = 1.280 Mg m3
Mr = 280.38Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2911 reflections
a = 8.4001 (8) Åθ = 2.3–21.0°
b = 9.6239 (9) ŵ = 0.21 mm1
c = 18.0037 (18) ÅT = 296 K
V = 1455.5 (2) Å3Plate, colourless
Z = 40.32 × 0.14 × 0.05 mm
F(000) = 592
Data collection top
Bruker SMART APEX CCD
diffractometer
3544 independent reflections
Radiation source: fine-focus sealed tube2226 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.3°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1212
Tmin = 0.83, Tmax = 0.99l = 2323
13778 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0489P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3544 reflectionsΔρmax = 0.30 e Å3
183 parametersΔρmin = 0.14 e Å3
0 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.44 (13)
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 40 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64858 (14)0.84588 (9)0.15748 (5)0.0727 (3)
N10.8093 (3)0.5444 (3)0.32883 (13)0.0490 (6)
N30.7707 (3)0.5908 (2)0.16493 (13)0.0463 (6)
C10.7918 (3)0.4569 (3)0.19853 (16)0.0458 (7)
C20.8075 (4)0.3419 (3)0.15237 (17)0.0557 (8)
H20.80150.35440.10120.067*
C30.8313 (4)0.2110 (3)0.17968 (19)0.0595 (9)
H30.83950.13580.14740.071*
C40.8432 (4)0.1910 (4)0.2555 (2)0.0634 (9)
H40.85780.10240.27490.076*
C50.8330 (4)0.3037 (3)0.30166 (18)0.0583 (9)
H50.84450.29020.35250.070*
C60.8063 (3)0.4371 (3)0.27555 (16)0.0459 (7)
C70.7116 (3)0.6452 (3)0.32402 (14)0.0419 (7)
C80.5878 (3)0.6491 (3)0.26317 (14)0.0444 (7)
H8A0.53810.55870.25770.053*
H8B0.50600.71680.27480.053*
C90.6724 (4)0.6887 (3)0.19329 (15)0.0463 (7)
C100.7243 (3)0.7615 (3)0.37858 (15)0.0444 (7)
C110.6384 (4)0.8824 (3)0.37030 (17)0.0600 (9)
H110.57030.89260.32990.072*
C120.6525 (5)0.9886 (4)0.4214 (2)0.0727 (10)
H120.59441.07000.41500.087*
C130.7510 (5)0.9753 (4)0.4813 (2)0.0733 (11)
H130.75821.04610.51620.088*
C140.8403 (5)0.8549 (4)0.48946 (16)0.0657 (9)
H140.90920.84590.52960.079*
C150.8274 (4)0.7485 (3)0.43846 (15)0.0551 (8)
H150.88780.66820.44420.066*
C160.8645 (4)0.6230 (3)0.09777 (15)0.0586 (9)
H16A0.95550.56110.09610.070*
H16B0.90490.71710.10210.070*
C170.7743 (5)0.6106 (4)0.02465 (17)0.0767 (12)
H17A0.84600.62650.01600.115*
H17B0.69030.67820.02330.115*
H17C0.72960.51910.02050.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1136 (8)0.0476 (5)0.0567 (5)0.0110 (5)0.0115 (5)0.0089 (4)
N10.0552 (15)0.0485 (14)0.0431 (13)0.0009 (13)0.0045 (12)0.0021 (11)
N30.0532 (14)0.0441 (14)0.0416 (13)0.0043 (11)0.0024 (12)0.0025 (11)
C10.0447 (17)0.0413 (15)0.0515 (17)0.0010 (15)0.0002 (14)0.0027 (14)
C20.063 (2)0.0537 (18)0.0505 (16)0.0001 (17)0.0022 (16)0.0089 (16)
C30.0574 (19)0.0484 (18)0.073 (2)0.0050 (16)0.0027 (18)0.0126 (16)
C40.059 (2)0.048 (2)0.083 (2)0.0093 (18)0.002 (2)0.0082 (16)
C50.061 (2)0.057 (2)0.0566 (19)0.0122 (18)0.0054 (18)0.0058 (15)
C60.0458 (17)0.0451 (17)0.0470 (17)0.0041 (14)0.0011 (13)0.0007 (13)
C70.0493 (17)0.0406 (15)0.0357 (14)0.0022 (14)0.0014 (12)0.0042 (13)
C80.0477 (17)0.0422 (16)0.0434 (15)0.0016 (14)0.0009 (13)0.0019 (14)
C90.0539 (18)0.0478 (17)0.0373 (14)0.0023 (15)0.0051 (14)0.0025 (12)
C100.0495 (17)0.0470 (17)0.0367 (14)0.0047 (14)0.0036 (14)0.0024 (13)
C110.074 (2)0.055 (2)0.0511 (17)0.0073 (18)0.0063 (16)0.0062 (14)
C120.088 (3)0.059 (2)0.071 (2)0.010 (2)0.000 (2)0.0149 (18)
C130.100 (3)0.069 (3)0.050 (2)0.017 (2)0.008 (2)0.0172 (19)
C140.084 (2)0.073 (2)0.0404 (16)0.016 (2)0.0088 (17)0.0011 (17)
C150.068 (2)0.0562 (19)0.0408 (15)0.0064 (18)0.0014 (17)0.0056 (14)
C160.073 (2)0.060 (2)0.0430 (16)0.0084 (18)0.0098 (15)0.0030 (15)
C170.116 (3)0.071 (3)0.0430 (18)0.006 (2)0.007 (2)0.0023 (17)
Geometric parameters (Å, º) top
S1—C91.657 (3)C8—H8A0.9700
N1—C71.274 (3)C8—H8B0.9700
N1—C61.409 (4)C10—C111.377 (4)
N3—C91.353 (4)C10—C151.389 (4)
N3—C11.434 (4)C11—C121.380 (4)
N3—C161.476 (4)C11—H110.9300
C1—C21.391 (4)C12—C131.364 (5)
C1—C61.405 (4)C12—H120.9300
C2—C31.367 (4)C13—C141.388 (5)
C2—H20.9300C13—H130.9300
C3—C41.383 (5)C14—C151.380 (4)
C3—H30.9300C14—H140.9300
C4—C51.368 (5)C15—H150.9300
C4—H40.9300C16—C171.524 (4)
C5—C61.386 (4)C16—H16A0.9700
C5—H50.9300C16—H16B0.9700
C7—C101.493 (4)C17—H17A0.9600
C7—C81.511 (4)C17—H17B0.9600
C8—C91.494 (4)C17—H17C0.9600
C7—N1—C6120.0 (2)N3—C9—S1124.2 (2)
C9—N3—C1122.8 (2)C8—C9—S1120.2 (2)
C9—N3—C16119.3 (2)C11—C10—C15119.1 (3)
C1—N3—C16117.9 (2)C11—C10—C7121.7 (3)
C2—C1—C6118.3 (3)C15—C10—C7119.2 (3)
C2—C1—N3118.4 (3)C10—C11—C12120.6 (3)
C6—C1—N3123.3 (2)C10—C11—H11119.7
C3—C2—C1122.2 (3)C12—C11—H11119.7
C3—C2—H2118.9C13—C12—C11120.6 (3)
C1—C2—H2118.9C13—C12—H12119.7
C2—C3—C4119.6 (3)C11—C12—H12119.7
C2—C3—H3120.2C12—C13—C14119.4 (3)
C4—C3—H3120.2C12—C13—H13120.3
C5—C4—C3119.0 (3)C14—C13—H13120.3
C5—C4—H4120.5C15—C14—C13120.4 (3)
C3—C4—H4120.5C15—C14—H14119.8
C4—C5—C6122.6 (3)C13—C14—H14119.8
C4—C5—H5118.7C14—C15—C10119.9 (3)
C6—C5—H5118.7C14—C15—H15120.0
C5—C6—C1118.3 (3)C10—C15—H15120.0
C5—C6—N1116.4 (3)N3—C16—C17115.2 (3)
C1—C6—N1125.0 (2)N3—C16—H16A108.5
N1—C7—C10118.7 (2)C17—C16—H16A108.5
N1—C7—C8120.8 (2)N3—C16—H16B108.5
C10—C7—C8120.5 (2)C17—C16—H16B108.5
C9—C8—C7106.8 (2)H16A—C16—H16B107.5
C9—C8—H8A110.4C16—C17—H17A109.5
C7—C8—H8A110.4C16—C17—H17B109.5
C9—C8—H8B110.4H17A—C17—H17B109.5
C7—C8—H8B110.4C16—C17—H17C109.5
H8A—C8—H8B108.6H17A—C17—H17C109.5
N3—C9—C8115.5 (2)H17B—C17—H17C109.5
C9—N3—C1—C2141.7 (3)C1—N3—C9—C80.8 (4)
C16—N3—C1—C240.1 (4)C16—N3—C9—C8177.4 (3)
C9—N3—C1—C641.9 (4)C1—N3—C9—S1178.2 (2)
C16—N3—C1—C6136.3 (3)C16—N3—C9—S10.0 (4)
C6—C1—C2—C32.0 (5)C7—C8—C9—N370.5 (3)
N3—C1—C2—C3178.6 (3)C7—C8—C9—S1107.0 (3)
C1—C2—C3—C41.1 (5)N1—C7—C10—C11170.5 (3)
C2—C3—C4—C51.0 (5)C8—C7—C10—C117.9 (4)
C3—C4—C5—C62.1 (6)N1—C7—C10—C158.3 (4)
C4—C5—C6—C11.1 (5)C8—C7—C10—C15173.2 (3)
C4—C5—C6—N1175.8 (3)C15—C10—C11—C121.0 (5)
C2—C1—C6—C50.9 (4)C7—C10—C11—C12179.8 (3)
N3—C1—C6—C5177.3 (3)C10—C11—C12—C130.4 (6)
C2—C1—C6—N1173.3 (3)C11—C12—C13—C141.6 (6)
N3—C1—C6—N13.1 (5)C12—C13—C14—C151.3 (6)
C7—N1—C6—C5142.0 (3)C13—C14—C15—C100.2 (5)
C7—N1—C6—C143.7 (4)C11—C10—C15—C141.3 (5)
C6—N1—C7—C10176.3 (2)C7—C10—C15—C14179.8 (3)
C6—N1—C7—C82.1 (4)C9—N3—C16—C1780.5 (3)
N1—C7—C8—C975.7 (3)C1—N3—C16—C17101.3 (3)
C10—C7—C8—C9102.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cg1i0.972.923.810 (3)154
C13—H13···S1ii0.972.863.706 (4)152
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+3/2, y+2, z+1/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAhabchane, A. H., Keita, A. & Essassi, E. M. (1999). Compt. Rend. Ser. IIC, 2, 519–523.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Braccio, M., Grossi, G. C., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935–949.  Web of Science CrossRef CAS Google Scholar
First citationKamal, A., Shankaraiah, N., Prabhakar, S., Reddy, C. R., Markandeya, N., Reddy, K. L. & Devaiah, X. (2008). Bioorg. Med. Chem. Lett. 18, 2434–2439.  Web of Science CrossRef CAS Google Scholar
First citationKumar, R. & Joshi, Y. C. (2007). Arkivoc, pp. 142–149.  Google Scholar
First citationMinnih, M. S., Kandri Rodi, Y. & Essassi, E. M. (2014). J. Mar. Chim. Heterocycl. 13, 1–24.  Google Scholar
First citationNarayana, B., Vijaya Raj, K. K., Ashalatha, B. V. & Kumari, N. S. (2006). Eur. J. Med. Chem. 41, 417–422.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds