organic compounds
1-Ethyl-4-phenyl-1,5-benzodiazepine-2-thione
aLaboratoire de Chimie Bio Organique Appliqué, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, cUFR Environnement, UNIV Jean Lorougnon Guédé, BP 150, Daloa, Ivory Coast, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: ahabchanenoureddine@gmail.com
In the title compound, C17H16N2S, the seven-membered ring adopts a boat conformation. The two aromatic rings are inclined at an angle of 34.7 (1)° to one another. The molecules pack in helical chains running along the c-axis direction through C—H⋯S hydrogen bonds. These are further linked into layers parallel to (100) by weak C—H⋯π(ring) interactions. The structure was refined as a two-component inversion twin.
Keywords: crystal structure; benzodiazepine; puckering analysis.
CCDC reference: 1523021
Structure description
1,5-Benzodiazepines have attracted attention as an important class of heterocyclic molecules in medicinal chemistry as drugs and pharmaceuticals. They are widely used as anticonvulsant (Narayana et al., 2006), anti-HIV-1 (Di Braccio et al., 2001), antimicrobial (Kumar & Joshi, 2007) and antitumor agents (Kamal et al., 2008). They are also employed as intermediates in the syntheses of several (Minnih et al., 2014; Ahabchane et al., 1999).
The dihedral angle between the mean planes of the C1–C6 and C10–C15 aromatic rings is 34.7 (1) Å. Puckering analysis of the seven-membered ring (Fig. 1) gave the parameters Q(1) = 0.876 (3) Å, Q(3) = 0.239 (3) Å, φ(2) = 206.8 (2)° and φ(3) = 308.0 (7) and a total puckering amplitude of 0.908 (3) Å. This ring is in a boat conformation.
In the crystal, molecules form helical chains running along the c-axis direction through C13—H13⋯S1 hydrogen bonds (Table 1, Figs. 2 and 3). These chains are linked into layers parallel to (100) by weak C8—H8B⋯π(ring) interactions (Table 1, and Figs. 2 and 3).
Synthesis and crystallization
To a solution of 1-ethyl-4-phenyl-1,5-benzodiazepin-2-one (0.80 g, 3.04 mmol) in 20 ml of pyridine was added phosphorus pentasulfide (0.84 g, 3.65 mmol). The mixture was refluxed for 4 h and the solvent was then evaporated under reduced pressure. The precipitate formed was washed with hot water. The residue obtained was crystallized from ethanol to afford crystals of the title compound.
Refinement
Crystal data, data collection and structure . The structure was refined as a two-component inversion twin.
details are summarized in Table 2Structural data
CCDC reference: 1523021
https://doi.org/10.1107/S2414314616019982/sj4080sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616019982/sj4080Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616019982/sj4080Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314616019982/sj4080Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H16N2S | Dx = 1.280 Mg m−3 |
Mr = 280.38 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 2911 reflections |
a = 8.4001 (8) Å | θ = 2.3–21.0° |
b = 9.6239 (9) Å | µ = 0.21 mm−1 |
c = 18.0037 (18) Å | T = 296 K |
V = 1455.5 (2) Å3 | Plate, colourless |
Z = 4 | 0.32 × 0.14 × 0.05 mm |
F(000) = 592 |
Bruker SMART APEX CCD diffractometer | 3544 independent reflections |
Radiation source: fine-focus sealed tube | 2226 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.3°, θmin = 2.3° |
φ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −12→12 |
Tmin = 0.83, Tmax = 0.99 | l = −23→23 |
13778 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.0489P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3544 reflections | Δρmax = 0.30 e Å−3 |
183 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Absolute structure: Refined as an inversion twin |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.44 (13) |
Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 40 sec/frame was used. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.64858 (14) | 0.84588 (9) | 0.15748 (5) | 0.0727 (3) | |
N1 | 0.8093 (3) | 0.5444 (3) | 0.32883 (13) | 0.0490 (6) | |
N3 | 0.7707 (3) | 0.5908 (2) | 0.16493 (13) | 0.0463 (6) | |
C1 | 0.7918 (3) | 0.4569 (3) | 0.19853 (16) | 0.0458 (7) | |
C2 | 0.8075 (4) | 0.3419 (3) | 0.15237 (17) | 0.0557 (8) | |
H2 | 0.8015 | 0.3544 | 0.1012 | 0.067* | |
C3 | 0.8313 (4) | 0.2110 (3) | 0.17968 (19) | 0.0595 (9) | |
H3 | 0.8395 | 0.1358 | 0.1474 | 0.071* | |
C4 | 0.8432 (4) | 0.1910 (4) | 0.2555 (2) | 0.0634 (9) | |
H4 | 0.8578 | 0.1024 | 0.2749 | 0.076* | |
C5 | 0.8330 (4) | 0.3037 (3) | 0.30166 (18) | 0.0583 (9) | |
H5 | 0.8445 | 0.2902 | 0.3525 | 0.070* | |
C6 | 0.8063 (3) | 0.4371 (3) | 0.27555 (16) | 0.0459 (7) | |
C7 | 0.7116 (3) | 0.6452 (3) | 0.32402 (14) | 0.0419 (7) | |
C8 | 0.5878 (3) | 0.6491 (3) | 0.26317 (14) | 0.0444 (7) | |
H8A | 0.5381 | 0.5587 | 0.2577 | 0.053* | |
H8B | 0.5060 | 0.7168 | 0.2748 | 0.053* | |
C9 | 0.6724 (4) | 0.6887 (3) | 0.19329 (15) | 0.0463 (7) | |
C10 | 0.7243 (3) | 0.7615 (3) | 0.37858 (15) | 0.0444 (7) | |
C11 | 0.6384 (4) | 0.8824 (3) | 0.37030 (17) | 0.0600 (9) | |
H11 | 0.5703 | 0.8926 | 0.3299 | 0.072* | |
C12 | 0.6525 (5) | 0.9886 (4) | 0.4214 (2) | 0.0727 (10) | |
H12 | 0.5944 | 1.0700 | 0.4150 | 0.087* | |
C13 | 0.7510 (5) | 0.9753 (4) | 0.4813 (2) | 0.0733 (11) | |
H13 | 0.7582 | 1.0461 | 0.5162 | 0.088* | |
C14 | 0.8403 (5) | 0.8549 (4) | 0.48946 (16) | 0.0657 (9) | |
H14 | 0.9092 | 0.8459 | 0.5296 | 0.079* | |
C15 | 0.8274 (4) | 0.7485 (3) | 0.43846 (15) | 0.0551 (8) | |
H15 | 0.8878 | 0.6682 | 0.4442 | 0.066* | |
C16 | 0.8645 (4) | 0.6230 (3) | 0.09777 (15) | 0.0586 (9) | |
H16A | 0.9555 | 0.5611 | 0.0961 | 0.070* | |
H16B | 0.9049 | 0.7171 | 0.1021 | 0.070* | |
C17 | 0.7743 (5) | 0.6106 (4) | 0.02465 (17) | 0.0767 (12) | |
H17A | 0.8460 | 0.6265 | −0.0160 | 0.115* | |
H17B | 0.6903 | 0.6782 | 0.0233 | 0.115* | |
H17C | 0.7296 | 0.5191 | 0.0205 | 0.115* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.1136 (8) | 0.0476 (5) | 0.0567 (5) | 0.0110 (5) | 0.0115 (5) | 0.0089 (4) |
N1 | 0.0552 (15) | 0.0485 (14) | 0.0431 (13) | 0.0009 (13) | −0.0045 (12) | 0.0021 (11) |
N3 | 0.0532 (14) | 0.0441 (14) | 0.0416 (13) | −0.0043 (11) | 0.0024 (12) | −0.0025 (11) |
C1 | 0.0447 (17) | 0.0413 (15) | 0.0515 (17) | −0.0010 (15) | −0.0002 (14) | −0.0027 (14) |
C2 | 0.063 (2) | 0.0537 (18) | 0.0505 (16) | 0.0001 (17) | 0.0022 (16) | −0.0089 (16) |
C3 | 0.0574 (19) | 0.0484 (18) | 0.073 (2) | 0.0050 (16) | 0.0027 (18) | −0.0126 (16) |
C4 | 0.059 (2) | 0.048 (2) | 0.083 (2) | 0.0093 (18) | 0.002 (2) | 0.0082 (16) |
C5 | 0.061 (2) | 0.057 (2) | 0.0566 (19) | 0.0122 (18) | −0.0054 (18) | 0.0058 (15) |
C6 | 0.0458 (17) | 0.0451 (17) | 0.0470 (17) | 0.0041 (14) | −0.0011 (13) | −0.0007 (13) |
C7 | 0.0493 (17) | 0.0406 (15) | 0.0357 (14) | −0.0022 (14) | 0.0014 (12) | 0.0042 (13) |
C8 | 0.0477 (17) | 0.0422 (16) | 0.0434 (15) | −0.0016 (14) | −0.0009 (13) | −0.0019 (14) |
C9 | 0.0539 (18) | 0.0478 (17) | 0.0373 (14) | −0.0023 (15) | −0.0051 (14) | −0.0025 (12) |
C10 | 0.0495 (17) | 0.0470 (17) | 0.0367 (14) | −0.0047 (14) | 0.0036 (14) | 0.0024 (13) |
C11 | 0.074 (2) | 0.055 (2) | 0.0511 (17) | 0.0073 (18) | −0.0063 (16) | −0.0062 (14) |
C12 | 0.088 (3) | 0.059 (2) | 0.071 (2) | 0.010 (2) | 0.000 (2) | −0.0149 (18) |
C13 | 0.100 (3) | 0.069 (3) | 0.050 (2) | −0.017 (2) | 0.008 (2) | −0.0172 (19) |
C14 | 0.084 (2) | 0.073 (2) | 0.0404 (16) | −0.016 (2) | −0.0088 (17) | 0.0011 (17) |
C15 | 0.068 (2) | 0.0562 (19) | 0.0408 (15) | −0.0064 (18) | −0.0014 (17) | 0.0056 (14) |
C16 | 0.073 (2) | 0.060 (2) | 0.0430 (16) | −0.0084 (18) | 0.0098 (15) | −0.0030 (15) |
C17 | 0.116 (3) | 0.071 (3) | 0.0430 (18) | −0.006 (2) | 0.007 (2) | −0.0023 (17) |
S1—C9 | 1.657 (3) | C8—H8A | 0.9700 |
N1—C7 | 1.274 (3) | C8—H8B | 0.9700 |
N1—C6 | 1.409 (4) | C10—C11 | 1.377 (4) |
N3—C9 | 1.353 (4) | C10—C15 | 1.389 (4) |
N3—C1 | 1.434 (4) | C11—C12 | 1.380 (4) |
N3—C16 | 1.476 (4) | C11—H11 | 0.9300 |
C1—C2 | 1.391 (4) | C12—C13 | 1.364 (5) |
C1—C6 | 1.405 (4) | C12—H12 | 0.9300 |
C2—C3 | 1.367 (4) | C13—C14 | 1.388 (5) |
C2—H2 | 0.9300 | C13—H13 | 0.9300 |
C3—C4 | 1.383 (5) | C14—C15 | 1.380 (4) |
C3—H3 | 0.9300 | C14—H14 | 0.9300 |
C4—C5 | 1.368 (5) | C15—H15 | 0.9300 |
C4—H4 | 0.9300 | C16—C17 | 1.524 (4) |
C5—C6 | 1.386 (4) | C16—H16A | 0.9700 |
C5—H5 | 0.9300 | C16—H16B | 0.9700 |
C7—C10 | 1.493 (4) | C17—H17A | 0.9600 |
C7—C8 | 1.511 (4) | C17—H17B | 0.9600 |
C8—C9 | 1.494 (4) | C17—H17C | 0.9600 |
C7—N1—C6 | 120.0 (2) | N3—C9—S1 | 124.2 (2) |
C9—N3—C1 | 122.8 (2) | C8—C9—S1 | 120.2 (2) |
C9—N3—C16 | 119.3 (2) | C11—C10—C15 | 119.1 (3) |
C1—N3—C16 | 117.9 (2) | C11—C10—C7 | 121.7 (3) |
C2—C1—C6 | 118.3 (3) | C15—C10—C7 | 119.2 (3) |
C2—C1—N3 | 118.4 (3) | C10—C11—C12 | 120.6 (3) |
C6—C1—N3 | 123.3 (2) | C10—C11—H11 | 119.7 |
C3—C2—C1 | 122.2 (3) | C12—C11—H11 | 119.7 |
C3—C2—H2 | 118.9 | C13—C12—C11 | 120.6 (3) |
C1—C2—H2 | 118.9 | C13—C12—H12 | 119.7 |
C2—C3—C4 | 119.6 (3) | C11—C12—H12 | 119.7 |
C2—C3—H3 | 120.2 | C12—C13—C14 | 119.4 (3) |
C4—C3—H3 | 120.2 | C12—C13—H13 | 120.3 |
C5—C4—C3 | 119.0 (3) | C14—C13—H13 | 120.3 |
C5—C4—H4 | 120.5 | C15—C14—C13 | 120.4 (3) |
C3—C4—H4 | 120.5 | C15—C14—H14 | 119.8 |
C4—C5—C6 | 122.6 (3) | C13—C14—H14 | 119.8 |
C4—C5—H5 | 118.7 | C14—C15—C10 | 119.9 (3) |
C6—C5—H5 | 118.7 | C14—C15—H15 | 120.0 |
C5—C6—C1 | 118.3 (3) | C10—C15—H15 | 120.0 |
C5—C6—N1 | 116.4 (3) | N3—C16—C17 | 115.2 (3) |
C1—C6—N1 | 125.0 (2) | N3—C16—H16A | 108.5 |
N1—C7—C10 | 118.7 (2) | C17—C16—H16A | 108.5 |
N1—C7—C8 | 120.8 (2) | N3—C16—H16B | 108.5 |
C10—C7—C8 | 120.5 (2) | C17—C16—H16B | 108.5 |
C9—C8—C7 | 106.8 (2) | H16A—C16—H16B | 107.5 |
C9—C8—H8A | 110.4 | C16—C17—H17A | 109.5 |
C7—C8—H8A | 110.4 | C16—C17—H17B | 109.5 |
C9—C8—H8B | 110.4 | H17A—C17—H17B | 109.5 |
C7—C8—H8B | 110.4 | C16—C17—H17C | 109.5 |
H8A—C8—H8B | 108.6 | H17A—C17—H17C | 109.5 |
N3—C9—C8 | 115.5 (2) | H17B—C17—H17C | 109.5 |
C9—N3—C1—C2 | 141.7 (3) | C1—N3—C9—C8 | 0.8 (4) |
C16—N3—C1—C2 | −40.1 (4) | C16—N3—C9—C8 | −177.4 (3) |
C9—N3—C1—C6 | −41.9 (4) | C1—N3—C9—S1 | 178.2 (2) |
C16—N3—C1—C6 | 136.3 (3) | C16—N3—C9—S1 | 0.0 (4) |
C6—C1—C2—C3 | 2.0 (5) | C7—C8—C9—N3 | 70.5 (3) |
N3—C1—C2—C3 | 178.6 (3) | C7—C8—C9—S1 | −107.0 (3) |
C1—C2—C3—C4 | −1.1 (5) | N1—C7—C10—C11 | 170.5 (3) |
C2—C3—C4—C5 | −1.0 (5) | C8—C7—C10—C11 | −7.9 (4) |
C3—C4—C5—C6 | 2.1 (6) | N1—C7—C10—C15 | −8.3 (4) |
C4—C5—C6—C1 | −1.1 (5) | C8—C7—C10—C15 | 173.2 (3) |
C4—C5—C6—N1 | −175.8 (3) | C15—C10—C11—C12 | −1.0 (5) |
C2—C1—C6—C5 | −0.9 (4) | C7—C10—C11—C12 | −179.8 (3) |
N3—C1—C6—C5 | −177.3 (3) | C10—C11—C12—C13 | −0.4 (6) |
C2—C1—C6—N1 | 173.3 (3) | C11—C12—C13—C14 | 1.6 (6) |
N3—C1—C6—N1 | −3.1 (5) | C12—C13—C14—C15 | −1.3 (6) |
C7—N1—C6—C5 | −142.0 (3) | C13—C14—C15—C10 | −0.2 (5) |
C7—N1—C6—C1 | 43.7 (4) | C11—C10—C15—C14 | 1.3 (5) |
C6—N1—C7—C10 | −176.3 (2) | C7—C10—C15—C14 | −179.8 (3) |
C6—N1—C7—C8 | 2.1 (4) | C9—N3—C16—C17 | −80.5 (3) |
N1—C7—C8—C9 | −75.7 (3) | C1—N3—C16—C17 | 101.3 (3) |
C10—C7—C8—C9 | 102.7 (3) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···Cg1i | 0.97 | 2.92 | 3.810 (3) | 154 |
C13—H13···S1ii | 0.97 | 2.86 | 3.706 (4) | 152 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+3/2, −y+2, z+1/2. |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.
References
Ahabchane, A. H., Keita, A. & Essassi, E. M. (1999). Compt. Rend. Ser. IIC, 2, 519–523. CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Di Braccio, M., Grossi, G. C., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935–949. Web of Science CrossRef CAS Google Scholar
Kamal, A., Shankaraiah, N., Prabhakar, S., Reddy, C. R., Markandeya, N., Reddy, K. L. & Devaiah, X. (2008). Bioorg. Med. Chem. Lett. 18, 2434–2439. Web of Science CrossRef CAS Google Scholar
Kumar, R. & Joshi, Y. C. (2007). Arkivoc, pp. 142–149. Google Scholar
Minnih, M. S., Kandri Rodi, Y. & Essassi, E. M. (2014). J. Mar. Chim. Heterocycl. 13, 1–24. Google Scholar
Narayana, B., Vijaya Raj, K. K., Ashalatha, B. V. & Kumari, N. S. (2006). Eur. J. Med. Chem. 41, 417–422. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.