organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(1,3-Benzodioxol-5-yl)-3-(2,4,5-tri­meth­­oxy­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Shri Pillappa College of Engineering, Bengaluru 560 089, India, bDepartment of Physics, Prist University, Vallam, Tanjavur 513 403, India, cInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, dDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, eDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and fDepartment of Physics, Acharya Institute of Technology, Soldevanahalli, Bengaluru 560 107, India
*Correspondence e-mail: naveen@ioe.uni-mysore.ac.in, manjunathhr@acharya.ac.in

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 13 December 2016; accepted 21 December 2016; online 6 January 2017)

The mol­ecule of the title compound C19H18O6, adopts an E conformation about the C=C double bond and the C—C=C—C torsion angle is −179.30 (16)°. The mol­ecule is nearly planar, as indicated by the dihedral angle of 6.99 (6)° between the benzene ring and the benzodioxalane ring. In the crystal, mol­ecules are linked via weak C—H⋯O hydrogen bonds, forming zigzag chains propagating along the b axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones form the central core for the construction of a variety of bioactive compounds. The usual method for the synthesis of chalcones involves the condensation of an aromatic aldehyde and an aromatic ketone in the presence of aqueous alkaline bases (Naveen et al., 2016[Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.]). Chalcones and their derivatives demonstrate a wide range of biological activities such as anti-diabetic, anti­neoplastic, anti­hypertensive, anti-inflammatory, anti­malarial, anti­oxidant and anti­fungal activities (Mahapatra et al., 2015[Mahapatra, D. K., Asati, V. & Bharti, S. K. (2015). Eur. J. Med. Chem. 92, 839-865.]). The α,β-unsaturated carbonyl system of chalcones made them useful building blocks in organic synthesis. They have been efficiently employed as precursors in the syntheses of biologically potent benzo­thia­zepines (Manjunath et al., 2014[Manjunath, B. C., Manjula, M., Raghavendra, K. R., Ajay Kumar, K. & Lokanath, N. K. (2014). Acta Cryst. E70, o261.]). In view of diversified applications of chalcones and as a part of our ongoing work on such mol­ecules (Tejkiran et al., 2016[Tejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. A, 324, 33-39.]), we report herein the synthesis and crystal structure of the title compound.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The mol­ecule is nearly planar with a dihedral angle of 6.99 (6)° between the benzene and benzodioxalane rings that are bridged by the olefinic double bond. This value is less than the value of 19.13 (15)° between the aromatic rings in the related chalcone derivative (E)-3-(2,3-di­chloro­phen­yl)-1-(4-fluoro­phen­yl)prop-2-en-1-one (Naveen et al., 2016[Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.]). The trans conformation of the C7=C8 double bond in the central enone group is confirmed by the value of the C1—C7=C8—C9 torsion angle −179.30 (16)°. The meth­oxy groups at C3, C4 and C6 are nearly coplanar with the C1–C6 benzene ring. In the crystal, the mol­ecules are linked via weak C—H⋯O hydrogen bonds (Table 1[link]), forming zigzag chains parallel to the b axis (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯O4i 0.97 2.54 3.464 (2) 159
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Partial packing diagram of the title compound, showing the formation of a mol­ecular chain parallel to the b axis via C—H⋯O hydrogen bonds (dotted lines).

Synthesis and crystallization

A mixture of 2,4,5-tri­meth­oxy­benzaldehyde (5 mmol), 1-(benzo[d][1,3]dioxol-5-yl)ethanone (5 mmol) and sodium hydroxide (5 mmol) in 95% ethyl alcohol (25 ml) was stirred at room temperature for 3 h. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was poured into ice cold water and kept in the refrigerator overnight. The solid that formed was filtered, and washed with cold hydro­chloric acid (5%). Yellow rectangular crystals were obtained by slow evaporation of a solution in methanol (yield 89%, m.p. 399–401 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H18O6
Mr 342.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.9127 (2), 13.4406 (3), 11.1011 (2)
β (°) 106.287 (1)
V3) 1562.89 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.91
Crystal size (mm) 0.29 × 0.26 × 0.24
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.779, 0.812
No. of measured, independent and observed [I > 2σ(I)] reflections 12593, 2568, 2283
Rint 0.054
(sin θ/λ)max−1) 0.586
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.145, 1.09
No. of reflections 2568
No. of parameters 229
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.30
Computer programs: APEX2 and SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

(E)-1-(1,3-Benzodioxol-5-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C19H18O6F(000) = 720
Mr = 342.33Dx = 1.455 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 2568 reflections
a = 10.9127 (2) Åθ = 5.3–64.5°
b = 13.4406 (3) ŵ = 0.91 mm1
c = 11.1011 (2) ÅT = 296 K
β = 106.287 (1)°Block, yellow
V = 1562.89 (5) Å30.29 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2568 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2283 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.054
Detector resolution: 18.4 pixels mm-1θmax = 64.5°, θmin = 5.3°
φ and ω scansh = 1112
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
k = 1515
Tmin = 0.779, Tmax = 0.812l = 1212
12593 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1062P)2 + 0.0554P]
where P = (Fo2 + 2Fc2)/3
2568 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.91113 (10)1.12891 (8)1.26097 (10)0.0195 (3)
O21.03766 (10)1.20902 (8)1.12453 (10)0.0211 (3)
O30.78978 (11)1.03030 (9)0.75876 (10)0.0253 (4)
O40.48629 (11)0.80424 (9)0.74724 (10)0.0256 (4)
O50.11332 (10)0.58892 (9)0.77554 (10)0.0225 (3)
O60.11852 (11)0.57683 (9)0.98559 (11)0.0239 (4)
C10.75134 (14)1.00721 (11)0.95591 (15)0.0168 (5)
C20.77990 (14)1.03224 (11)1.08453 (14)0.0166 (5)
C30.87534 (14)1.09951 (12)1.13825 (14)0.0170 (5)
C40.94560 (14)1.14401 (11)1.06326 (15)0.0173 (5)
C50.91856 (15)1.12160 (11)0.93735 (15)0.0186 (5)
C60.82250 (15)1.05351 (12)0.88408 (14)0.0179 (5)
C70.65492 (15)0.93450 (11)0.89609 (15)0.0179 (5)
C80.57013 (15)0.88508 (11)0.94087 (15)0.0184 (5)
C90.48403 (14)0.81406 (12)0.85739 (15)0.0185 (5)
C100.39080 (14)0.75351 (11)0.90211 (14)0.0167 (4)
C110.29852 (14)0.70065 (11)0.80904 (14)0.0180 (5)
C120.21113 (14)0.64612 (11)0.84800 (15)0.0174 (5)
C130.04917 (16)0.54733 (12)0.86066 (15)0.0218 (5)
C140.21371 (15)0.63905 (11)0.97324 (15)0.0178 (5)
C150.30402 (15)0.68775 (12)1.06610 (15)0.0198 (5)
C160.39221 (15)0.74662 (12)1.02786 (15)0.0183 (5)
C170.84472 (16)1.08758 (13)1.34227 (15)0.0234 (5)
C181.11336 (15)1.25347 (13)1.05277 (15)0.0227 (5)
C190.87351 (16)1.06180 (12)0.68832 (15)0.0226 (5)
H20.733601.002901.133800.0200*
H50.964301.151800.888200.0220*
H70.651400.919800.813300.0220*
H80.565900.895501.022400.0220*
H110.297400.702900.725000.0210*
H13A0.037900.571700.840700.0260*
H13B0.046800.475400.854000.0260*
H150.306400.681901.150200.0240*
H160.453300.782001.087900.0220*
H17A0.755301.101801.310100.0350*
H17B0.876601.116101.424400.0350*
H17C0.857401.016801.347200.0350*
H18A1.152501.202201.016000.0340*
H18B1.178401.294101.106600.0340*
H18C1.060001.293900.987600.0340*
H19A0.874401.133200.685000.0340*
H19B0.844501.035600.604700.0340*
H19C0.958201.037900.727800.0340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0220 (6)0.0216 (6)0.0148 (6)0.0055 (4)0.0049 (5)0.0011 (4)
O20.0203 (6)0.0225 (6)0.0193 (6)0.0070 (4)0.0035 (5)0.0002 (4)
O30.0311 (7)0.0300 (7)0.0164 (6)0.0111 (5)0.0094 (5)0.0039 (5)
O40.0303 (7)0.0282 (7)0.0202 (6)0.0094 (5)0.0104 (5)0.0053 (5)
O50.0215 (6)0.0247 (6)0.0206 (6)0.0080 (5)0.0047 (5)0.0030 (5)
O60.0209 (6)0.0287 (7)0.0230 (7)0.0076 (5)0.0077 (5)0.0005 (5)
C10.0151 (8)0.0146 (8)0.0198 (8)0.0023 (6)0.0033 (6)0.0010 (6)
C20.0159 (8)0.0152 (8)0.0194 (8)0.0004 (6)0.0061 (6)0.0013 (6)
C30.0166 (8)0.0177 (8)0.0162 (8)0.0020 (6)0.0037 (6)0.0009 (6)
C40.0151 (8)0.0145 (8)0.0211 (9)0.0020 (6)0.0032 (6)0.0016 (6)
C50.0178 (8)0.0178 (8)0.0216 (9)0.0014 (6)0.0080 (6)0.0038 (6)
C60.0189 (8)0.0187 (8)0.0158 (8)0.0024 (6)0.0044 (7)0.0006 (6)
C70.0183 (8)0.0166 (8)0.0184 (8)0.0045 (6)0.0043 (6)0.0003 (6)
C80.0187 (8)0.0171 (8)0.0190 (8)0.0019 (6)0.0046 (7)0.0004 (6)
C90.0190 (8)0.0164 (8)0.0205 (9)0.0043 (6)0.0063 (7)0.0011 (6)
C100.0165 (8)0.0131 (7)0.0202 (8)0.0033 (6)0.0046 (6)0.0002 (6)
C110.0206 (8)0.0167 (8)0.0167 (8)0.0022 (6)0.0054 (7)0.0000 (6)
C120.0159 (7)0.0141 (8)0.0214 (9)0.0016 (6)0.0039 (6)0.0020 (6)
C130.0205 (8)0.0237 (9)0.0226 (9)0.0055 (7)0.0082 (7)0.0034 (7)
C140.0164 (8)0.0153 (8)0.0228 (9)0.0031 (6)0.0073 (6)0.0018 (6)
C150.0205 (8)0.0212 (9)0.0178 (8)0.0021 (6)0.0054 (7)0.0013 (6)
C160.0168 (8)0.0158 (8)0.0206 (9)0.0025 (6)0.0025 (6)0.0009 (6)
C170.0271 (9)0.0264 (9)0.0177 (9)0.0070 (7)0.0079 (7)0.0006 (6)
C180.0196 (9)0.0225 (9)0.0266 (9)0.0038 (7)0.0076 (7)0.0011 (7)
C190.0281 (9)0.0234 (9)0.0187 (9)0.0001 (7)0.0107 (7)0.0005 (6)
Geometric parameters (Å, º) top
O1—C31.3661 (18)C11—C121.366 (2)
O1—C171.420 (2)C12—C141.386 (2)
O2—C41.3609 (19)C14—C151.376 (2)
O2—C181.429 (2)C15—C161.401 (2)
O3—C61.3717 (18)C2—H20.9300
O3—C191.424 (2)C5—H50.9300
O4—C91.2370 (19)C7—H70.9300
O5—C121.3769 (19)C8—H80.9300
O5—C131.438 (2)C11—H110.9300
O6—C131.437 (2)C13—H13A0.9700
O6—C141.370 (2)C13—H13B0.9700
C1—C21.414 (2)C15—H150.9300
C1—C61.405 (2)C16—H160.9300
C1—C71.453 (2)C17—H17A0.9600
C2—C31.382 (2)C17—H17B0.9600
C3—C41.413 (2)C17—H17C0.9600
C4—C51.379 (2)C18—H18A0.9600
C5—C61.392 (2)C18—H18B0.9600
C7—C81.343 (2)C18—H18C0.9600
C8—C91.471 (2)C19—H19A0.9600
C9—C101.492 (2)C19—H19B0.9600
C10—C111.415 (2)C19—H19C0.9600
C10—C161.395 (2)
C3—O1—C17117.82 (12)C1—C2—H2119.00
C4—O2—C18116.80 (12)C3—C2—H2119.00
C6—O3—C19117.70 (13)C4—C5—H5120.00
C12—O5—C13105.89 (12)C6—C5—H5120.00
C13—O6—C14106.30 (12)C1—C7—H7115.00
C2—C1—C6117.87 (14)C8—C7—H7115.00
C2—C1—C7123.22 (14)C7—C8—H8121.00
C6—C1—C7118.90 (14)C9—C8—H8121.00
C1—C2—C3121.16 (14)C10—C11—H11121.00
O1—C3—C2126.14 (14)C12—C11—H11121.00
O1—C3—C4114.49 (14)O5—C13—H13A110.00
C2—C3—C4119.38 (14)O5—C13—H13B110.00
O2—C4—C3115.07 (14)O6—C13—H13A110.00
O2—C4—C5124.41 (14)O6—C13—H13B110.00
C3—C4—C5120.51 (14)H13A—C13—H13B108.00
C4—C5—C6119.73 (15)C14—C15—H15122.00
O3—C6—C1116.54 (14)C16—C15—H15122.00
O3—C6—C5122.08 (14)C10—C16—H16119.00
C1—C6—C5121.35 (14)C15—C16—H16119.00
C1—C7—C8130.50 (15)O1—C17—H17A109.00
C7—C8—C9118.20 (14)O1—C17—H17B110.00
O4—C9—C8120.37 (15)O1—C17—H17C109.00
O4—C9—C10118.37 (14)H17A—C17—H17B110.00
C8—C9—C10121.25 (14)H17A—C17—H17C109.00
C9—C10—C11116.28 (13)H17B—C17—H17C109.00
C9—C10—C16123.50 (14)O2—C18—H18A109.00
C11—C10—C16120.21 (14)O2—C18—H18B109.00
C10—C11—C12117.09 (14)O2—C18—H18C109.00
O5—C12—C11127.62 (14)H18A—C18—H18B109.00
O5—C12—C14110.01 (13)H18A—C18—H18C110.00
C11—C12—C14122.34 (15)H18B—C18—H18C109.00
O5—C13—O6107.78 (13)O3—C19—H19A109.00
O6—C14—C12109.85 (14)O3—C19—H19B109.00
O6—C14—C15128.27 (15)O3—C19—H19C109.00
C12—C14—C15121.86 (15)H19A—C19—H19B109.00
C14—C15—C16116.77 (15)H19A—C19—H19C109.00
C10—C16—C15121.68 (15)H19B—C19—H19C109.00
C17—O1—C3—C20.3 (2)C2—C3—C4—C50.7 (2)
C17—O1—C3—C4179.87 (13)O2—C4—C5—C6179.72 (14)
C18—O2—C4—C3178.25 (13)C3—C4—C5—C60.9 (2)
C18—O2—C4—C52.4 (2)C4—C5—C6—O3178.47 (15)
C19—O3—C6—C1169.19 (14)C4—C5—C6—C10.4 (2)
C19—O3—C6—C512.7 (2)C1—C7—C8—C9179.30 (16)
C13—O5—C12—C11179.87 (15)C7—C8—C9—O43.4 (2)
C13—O5—C12—C142.25 (17)C7—C8—C9—C10177.58 (15)
C12—O5—C13—O63.93 (16)O4—C9—C10—C119.5 (2)
C14—O6—C13—O54.16 (16)O4—C9—C10—C16169.88 (15)
C13—O6—C14—C122.82 (17)C8—C9—C10—C11169.58 (14)
C13—O6—C14—C15178.86 (16)C8—C9—C10—C1611.1 (2)
C6—C1—C2—C30.5 (2)C9—C10—C11—C12178.97 (14)
C7—C1—C2—C3177.87 (15)C16—C10—C11—C121.7 (2)
C2—C1—C6—O3177.88 (14)C9—C10—C16—C15179.06 (15)
C2—C1—C6—C50.3 (2)C11—C10—C16—C150.2 (2)
C7—C1—C6—O33.7 (2)C10—C11—C12—O5179.86 (14)
C7—C1—C6—C5178.14 (15)C10—C11—C12—C142.2 (2)
C2—C1—C7—C86.3 (3)O5—C12—C14—O60.37 (18)
C6—C1—C7—C8175.42 (17)O5—C12—C14—C15178.81 (14)
C1—C2—C3—O1179.85 (14)C11—C12—C14—O6177.65 (14)
C1—C2—C3—C40.0 (2)C11—C12—C14—C150.8 (2)
O1—C3—C4—O20.0 (2)O6—C14—C15—C16179.32 (15)
O1—C3—C4—C5179.42 (14)C12—C14—C15—C161.2 (2)
C2—C3—C4—O2179.86 (14)C14—C15—C16—C101.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O4i0.972.543.464 (2)159
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahapatra, D. K., Asati, V. & Bharti, S. K. (2015). Eur. J. Med. Chem. 92, 839–865.  Web of Science CrossRef CAS Google Scholar
First citationManjunath, B. C., Manjula, M., Raghavendra, K. R., Ajay Kumar, K. & Lokanath, N. K. (2014). Acta Cryst. E70, o261.  CSD CrossRef IUCr Journals Google Scholar
First citationNaveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016). IUCrData, 1, x161800.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. A, 324, 33–39.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds