metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Acetyl­dicarbon­yl(η5-cyclo­penta­dien­yl)[tris­(3,5-di­methyl­phen­yl)phosphane-κP]molybdenum(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Carleton College, 1 N. College St., Northfield, MN 55057, USA, and bDepartment of Chemistry and Biochemistry, St Catherine University, 2004 Randolph Ave., St Paul, MN 55105, USA
*Correspondence e-mail: mwhited@carleton.edu

Edited by S. Parkin, University of Kentucky, USA (Received 30 December 2016; accepted 9 January 2017; online 13 January 2017)

The title compound, [Mo(C5H5)(C2H3O)(C24H27P)(CO)2], was prepared by reaction of [Mo(C5H5)(CO)3(CH3)] with tris­(3,5-di­methyl­phen­yl)phosphane. The complex exhibits a four-legged piano-stool geometry with trans-disposed acetyl and phosphane ligands. The mol­ecular geometry is nearly identical to that of the tri­phenyl­phosphane derivative, but introduction of methyl groups on the aromatic phosphane substituents significantly impacts supra­molecular organization. In the crystal, non-classical C—H⋯O inter­actions involving the acetyl carbonyl group lead to a chain motif along [010], and another set of C—H⋯O close contacts join inversion-related mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The synthesis of the title complex, [Mo(C5H5)(C2H3O)(C24H27P)(CO)2], (1), has not been reported previously, though several analogous complexes are known. The most closely related complex for which structural information is available contains a tri­phenyl­phosphane ligand (Churchill & Fennessey, 1968[Churchill, M. R. & Fennessey, J. P. (1968). Inorg. Chem. 7, 553-558.]).

Complex (1) exhibits a four-legged `piano-stool' geometry, common for cyclo­penta­dienyl (Cp) complexes of molybdenum (Fig. 1[link], Table 1[link]). The acetyl and phosphane ligands are trans-disposed and the acetyl ligand is oriented with the O atom syn to the Cp ring, which is consistent with the majority of related crystal structures, the only exception being the recently reported tri(2-fur­yl)phosphane derivative (Whited et al., 2013[Whited, M. T., Bakker-Arkema, J. G., Greenwald, J. E., Morrill, L. A. & Janzen, D. E. (2013). Acta Cryst. E69, m475-m476.]). The Mo—Cp centroid distance is 2.016 (1) Å. The Mo1—P1 bond length [2.4708 (7) Å] is nearly identical within error to that of the tri­phenyl­phosphane derivative and only slightly longer than those of methyl­diphenyl [2.462 (2) Å] and di­methyl­phenyl [2.4535 (9) Å] analogues (Whited et al., 2012[Whited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. & Janzen, D. E. (2012). Acta Cryst. E68, m1158-m1159.], 2014[Whited, M. T., Hofmeister, G. E., Hodges, C. J., Jensen, L. T., Keyes, S. H., Ngamnithiporn, A. & Janzen, D. E. (2014). Acta Cryst. E70, 216-220.]). The C1—Mo1—P1 angle [132.89 (8)°] is also quite similar to the tri­phenyl­phosphane complex, indicating that the added bulk of six meta-methyl groups does not markedly change the steric profile of the phosphane ligand near the metal atom.

Table 1
Selected geometric parameters (Å, °)

Mo1—P1 2.4708 (7) Mo1—C3 1.970 (3)
Mo1—C1 2.270 (3) Mo1—C4 1.966 (3)
       
C1—Mo1—P1 132.89 (8) C4—Mo1—P1 78.21 (7)
C3—Mo1—P1 81.30 (7) C4—Mo1—C1 70.1 (1)
C3—Mo1—C1 77.3 (1) C4—Mo1—C3 108.9 (1)
[Figure 1]
Figure 1
The mol­ecular structure of (1), with displacement ellipsoids drawn at the 50% probability level.

Although the presence of meta-methyl groups does not change the local structure, the supra­molecular organization differs substanti­ally from the tri­phenyl­phosphane derivative. Whereas the tri­phenyl­phosphane complex is joined into sheets in the solid state by close contacts between the acetyl O and the meta and para H atoms of the phosphane phenyl rings, such contacts are precluded for (1) by the presence of meta-methyl groups. However, the acetyl O1 atom still plays an important role for complex (1), since inter­molecular C—H⋯O hydrogen-bonding inter­actions between atom O1 of the acetyl carbonyl group on one complex and atom H33B from a methyl group of a 3,5-di­methyl­phenyl phosphane substituent [C33⋯O1ii = 3.349 (4) Å; Table 2[link]] of a neighboring complex organize the mol­ecules into chains parallel to [010] (Fig. 2[link]). Additional C16—H16B⋯O3 close contacts [C16⋯O3i = 3.234 (4) Å; Table 2[link]] link mol­ecules related by an inversion center at (−x, −y + 1, −z + 1).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16B⋯O3i 0.98 2.65 3.234 (4) 119
C33—H33B⋯O1ii 0.98 2.55 3.349 (4) 139
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y+1, z.
[Figure 2]
Figure 2
The crystal packing of (1), viewed approximately perpendicular to (100), showing chains along [010]. Dashed lines indicate inter­molecular C—H⋯O hydrogen-bonding inter­actions.

Synthesis and crystallization

CpMo(CO)3(CH3). This compound was prepared by a modification of the method used by Gladysz et al. (1979[Gladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). Inorg. Chem. 18, 553-558.]), as reported previously by Whited & Hofmeister (2014[Whited, M. T. & Hofmeister, G. E. (2014). J. Chem. Educ. 91, 1050-1053.]).

CpMo(CO)2(P(3,5-Me2C6H3)3)(COCH3) (1). In an inert atmosphere glove-box, CpMo(CO)3(CH3) (68.3 mg, 0.263 mmol) was dissolved in 5 ml aceto­nitrile. In a separate vial, tris­(3,5-di­methyl­phen­yl)phosphane (152 mg, 0.437 mmol) was dissolved in 5 ml aceto­nitrile. The vials were combined and the resulting solution was stirred for 1 week. The solvent was removed in vacuo, leaving an orange oil that was washed with pentane (2 × 3 ml), extracted into benzene (3 ml), filtered, and lyophilized to afford the desired product in pure form as a yellow powder, as confirmed by IR and NMR (1H, 13C, and 31P) spectroscopic analyses. Crystalline material was obtained as yellow–orange prisms by chilling a concentrated solution of (1) in diethyl ether at 233 K.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link]. The maximum and minimum electron densities in the final difference Fourier map are located 0.85 and 0.72 Å, respectively, from atom Mo1.

Table 3
Experimental details

Crystal data
Chemical formula [Mo(C5H5)(C2H3O)(C24H27P)(CO)2]
Mr 606.52
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 10.9903 (11), 11.2364 (11), 14.1608 (14)
α, β, γ (°) 89.737 (8), 78.229 (6), 60.997 (7)
V3) 1488.2 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.53
Crystal size (mm) 0.37 × 0.29 × 0.19
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.732, 0.905
No. of measured, independent and observed [I > 2σ(I)] reflections 15778, 6824, 5758
Rint 0.037
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.088, 1.05
No. of reflections 6824
No. of parameters 350
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.51
Computer programs: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

A small number of low-angle reflections (11) were rejected from this high-quality data set due to the arrangement of the instrument with a conservatively sized beam stop and a fixed-position detector. The large number of reflections in this data set (and the Fourier-transform relationship of intensities to atoms) ensures that no particular bias was thereby introduced into this routine structure determination.

Structural data


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Acetyldicarbonyl(η5-cyclopentadienyl)[tris(3,5-dimethylphenyl)phosphane-κP]molybdenum(II) top
Crystal data top
[Mo(C5H5)(C2H3O)(C24H27P)(CO)2]Z = 2
Mr = 606.52F(000) = 628
Triclinic, P1Dx = 1.354 Mg m3
a = 10.9903 (11) ÅMo Kα radiation, λ = 0.71075 Å
b = 11.2364 (11) ÅCell parameters from 14088 reflections
c = 14.1608 (14) Åθ = 3.3–27.7°
α = 89.737 (8)°µ = 0.53 mm1
β = 78.229 (6)°T = 173 K
γ = 60.997 (7)°Prism, yellow
V = 1488.2 (3) Å30.37 × 0.29 × 0.19 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
5758 reflections with I > 2σ(I)
Detector resolution: 6.849 pixels mm-1Rint = 0.037
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1414
Tmin = 0.732, Tmax = 0.905k = 1414
15778 measured reflectionsl = 1818
6824 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.031P)2 + 1.3336P]
where P = (Fo2 + 2Fc2)/3
6824 reflections(Δ/σ)max < 0.001
350 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were placed in calculated positions and refined using the riding-model approximation, with distances of C—H = 0.95, 1.00 and 0.98 Å for the phenyl, cyclopentadienyl and methyl groups, respectively, and with Uiso(H) = kUeq(C), with k = 1.2 for phenyl and cyclopentadienyl groups and 1.5 for methyl groups. Methyl groups were allowed to rotate in order to find the best rotameric conformation.

Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.27802 (2)0.14889 (2)0.26221 (2)0.02292 (7)
P10.33171 (7)0.33783 (6)0.26900 (4)0.02146 (14)
O10.0668 (2)0.0454 (2)0.26196 (17)0.0477 (6)
O20.2898 (2)0.2042 (2)0.04515 (14)0.0389 (5)
O30.0005 (2)0.3708 (2)0.40356 (14)0.0357 (5)
C10.0865 (3)0.1385 (3)0.2354 (2)0.0327 (6)
C20.0206 (3)0.2456 (3)0.1860 (2)0.0420 (7)
H2A0.10860.24000.19950.050*
H2B0.01940.22960.11580.050*
H2C0.04190.33670.21050.050*
C30.2786 (3)0.1917 (3)0.12713 (19)0.0273 (5)
C40.1015 (3)0.2928 (3)0.34792 (19)0.0258 (5)
C50.5057 (3)0.0070 (3)0.2952 (2)0.0429 (8)
H50.58170.03250.29270.051*
C60.4944 (3)0.0642 (3)0.2187 (2)0.0413 (7)
H60.56070.09830.15300.050*
C70.3782 (3)0.0882 (3)0.2546 (2)0.0394 (7)
H70.35060.14460.21890.047*
C80.3202 (4)0.0328 (3)0.3537 (2)0.0404 (7)
H80.24560.04450.39980.049*
C90.3994 (4)0.0253 (3)0.3786 (2)0.0425 (8)
H90.38910.06380.44510.051*
C100.3950 (3)0.3425 (2)0.37818 (18)0.0241 (5)
C110.3086 (3)0.3584 (3)0.47017 (18)0.0259 (5)
H110.21420.37420.47550.031*
C120.3586 (3)0.3515 (3)0.55382 (19)0.0280 (6)
C130.4973 (3)0.3276 (3)0.54430 (19)0.0296 (6)
H130.53210.32330.60110.036*
C140.5866 (3)0.3099 (3)0.4544 (2)0.0282 (6)
C150.5342 (3)0.3176 (3)0.37144 (19)0.0267 (5)
H150.59400.30580.30940.032*
C160.2665 (3)0.3669 (3)0.6530 (2)0.0403 (7)
H16A0.31060.28160.68270.048*
H16B0.17140.38710.64660.048*
H16C0.25780.44200.69390.048*
C170.7376 (3)0.2816 (3)0.4459 (2)0.0409 (7)
H17A0.76860.24620.50510.049*
H17B0.74110.36650.43700.049*
H17C0.80120.21360.39000.049*
C180.4725 (3)0.3360 (3)0.17228 (18)0.0245 (5)
C190.5724 (3)0.2154 (3)0.11316 (18)0.0276 (6)
H190.56340.13570.11990.033*
C200.6860 (3)0.2102 (3)0.0439 (2)0.0315 (6)
C210.6961 (3)0.3284 (3)0.03509 (19)0.0319 (6)
H210.77220.32590.01250.038*
C220.5991 (3)0.4498 (3)0.09314 (19)0.0283 (6)
C230.4860 (3)0.4527 (3)0.16183 (18)0.0273 (5)
H230.41760.53540.20190.033*
C240.7946 (4)0.0788 (3)0.0194 (3)0.0508 (9)
H24A0.86420.01890.01690.061*
H24B0.84420.09950.07730.061*
H24C0.74600.03280.03900.061*
C250.6142 (4)0.5759 (3)0.0831 (2)0.0414 (7)
H25A0.57360.62240.02940.050*
H25B0.71560.54940.06990.050*
H25C0.56320.63780.14340.050*
C260.1824 (3)0.5099 (2)0.26811 (17)0.0221 (5)
C270.1200 (3)0.5347 (3)0.18874 (18)0.0263 (5)
H270.15320.46180.13950.032*
C280.0104 (3)0.6634 (3)0.17984 (19)0.0280 (6)
C290.0354 (3)0.7686 (3)0.2525 (2)0.0302 (6)
H290.10830.85770.24630.036*
C300.0217 (3)0.7479 (3)0.33391 (19)0.0279 (6)
C310.1322 (3)0.6169 (3)0.34102 (18)0.0258 (5)
H310.17320.60070.39590.031*
C320.0603 (3)0.6872 (3)0.0953 (2)0.0428 (7)
H32A0.14840.68210.11490.051*
H32B0.00490.61710.04100.051*
H32C0.08340.77800.07530.051*
C330.0352 (3)0.8636 (3)0.4132 (2)0.0395 (7)
H33A0.13740.92470.41800.047*
H33B0.01600.91500.39800.047*
H33C0.02100.82600.47520.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02448 (12)0.01994 (11)0.02207 (12)0.00976 (9)0.00405 (8)0.00436 (8)
P10.0215 (3)0.0217 (3)0.0190 (3)0.0094 (3)0.0038 (2)0.0036 (2)
O10.0512 (14)0.0469 (13)0.0568 (14)0.0352 (12)0.0071 (11)0.0083 (11)
O20.0509 (13)0.0478 (12)0.0263 (10)0.0300 (11)0.0108 (9)0.0082 (9)
O30.0292 (11)0.0358 (11)0.0338 (11)0.0120 (9)0.0011 (9)0.0007 (9)
C10.0333 (15)0.0391 (16)0.0260 (14)0.0210 (13)0.0010 (11)0.0017 (12)
C20.0354 (17)0.055 (2)0.0395 (17)0.0237 (16)0.0120 (13)0.0066 (15)
C30.0295 (14)0.0251 (13)0.0300 (14)0.0157 (12)0.0066 (11)0.0035 (11)
C40.0300 (14)0.0263 (13)0.0258 (13)0.0170 (12)0.0080 (11)0.0070 (11)
C50.0326 (16)0.0328 (16)0.057 (2)0.0073 (13)0.0216 (15)0.0153 (15)
C60.0319 (16)0.0295 (15)0.0421 (17)0.0024 (13)0.0011 (13)0.0046 (13)
C70.0456 (18)0.0208 (13)0.0447 (17)0.0114 (13)0.0094 (14)0.0049 (12)
C80.0504 (19)0.0268 (14)0.0364 (16)0.0150 (14)0.0055 (14)0.0130 (12)
C90.052 (2)0.0304 (15)0.0389 (17)0.0114 (15)0.0229 (15)0.0136 (13)
C100.0260 (13)0.0220 (12)0.0229 (12)0.0099 (11)0.0080 (10)0.0033 (10)
C110.0240 (13)0.0247 (13)0.0254 (13)0.0092 (11)0.0059 (10)0.0065 (10)
C120.0325 (14)0.0215 (12)0.0248 (13)0.0090 (11)0.0078 (11)0.0063 (10)
C130.0353 (15)0.0246 (13)0.0296 (14)0.0122 (12)0.0159 (12)0.0052 (11)
C140.0270 (14)0.0240 (13)0.0361 (15)0.0121 (11)0.0138 (11)0.0065 (11)
C150.0257 (13)0.0260 (13)0.0265 (13)0.0118 (11)0.0047 (10)0.0028 (10)
C160.0406 (17)0.0460 (18)0.0256 (14)0.0154 (15)0.0059 (13)0.0105 (13)
C170.0331 (16)0.0484 (18)0.0490 (18)0.0223 (15)0.0192 (14)0.0087 (15)
C180.0238 (13)0.0267 (13)0.0218 (12)0.0115 (11)0.0059 (10)0.0060 (10)
C190.0262 (13)0.0298 (14)0.0271 (13)0.0150 (12)0.0035 (11)0.0028 (11)
C200.0268 (14)0.0345 (15)0.0306 (14)0.0145 (12)0.0030 (11)0.0016 (12)
C210.0307 (15)0.0427 (16)0.0247 (13)0.0220 (13)0.0009 (11)0.0027 (12)
C220.0318 (14)0.0356 (15)0.0242 (13)0.0211 (13)0.0083 (11)0.0073 (11)
C230.0284 (14)0.0289 (13)0.0221 (12)0.0135 (12)0.0026 (10)0.0022 (10)
C240.0416 (19)0.0464 (19)0.053 (2)0.0213 (16)0.0121 (15)0.0146 (16)
C250.0488 (19)0.0436 (17)0.0413 (17)0.0320 (16)0.0053 (14)0.0080 (14)
C260.0222 (12)0.0206 (12)0.0223 (12)0.0103 (10)0.0037 (10)0.0067 (10)
C270.0290 (14)0.0255 (13)0.0228 (12)0.0125 (11)0.0048 (10)0.0027 (10)
C280.0257 (13)0.0348 (14)0.0245 (13)0.0151 (12)0.0079 (11)0.0093 (11)
C290.0265 (14)0.0227 (13)0.0342 (15)0.0071 (11)0.0060 (11)0.0101 (11)
C300.0281 (14)0.0244 (13)0.0291 (14)0.0123 (11)0.0042 (11)0.0049 (11)
C310.0251 (13)0.0272 (13)0.0231 (13)0.0114 (11)0.0055 (10)0.0044 (10)
C320.0422 (18)0.0450 (18)0.0384 (17)0.0151 (15)0.0212 (14)0.0134 (14)
C330.0422 (18)0.0265 (14)0.0377 (16)0.0084 (13)0.0077 (13)0.0017 (12)
Geometric parameters (Å, º) top
Mo1—P12.4708 (7)C16—H16A0.9800
Mo1—C12.270 (3)C16—H16B0.9800
Mo1—C31.970 (3)C16—H16C0.9800
Mo1—C41.966 (3)C17—H17A0.9800
Mo1—C52.371 (3)C17—H17B0.9800
Mo1—C62.379 (3)C17—H17C0.9800
Mo1—C72.330 (3)C18—C191.391 (4)
Mo1—C82.316 (3)C18—C231.395 (4)
Mo1—C92.346 (3)C19—H190.9500
P1—C101.831 (3)C19—C201.398 (4)
P1—C181.837 (3)C20—C211.389 (4)
P1—C261.834 (2)C20—C241.508 (4)
O1—C11.211 (3)C21—H210.9500
O2—C31.157 (3)C21—C221.384 (4)
O3—C41.157 (3)C22—C231.400 (4)
C1—C21.510 (4)C22—C251.507 (4)
C2—H2A0.9800C23—H230.9500
C2—H2B0.9800C24—H24A0.9800
C2—H2C0.9800C24—H24B0.9800
C5—H51.0000C24—H24C0.9800
C5—C61.410 (5)C25—H25A0.9800
C5—C91.417 (5)C25—H25B0.9800
C6—H61.0000C25—H25C0.9800
C6—C71.424 (4)C26—C271.392 (3)
C7—H71.0000C26—C311.396 (3)
C7—C81.422 (4)C27—H270.9500
C8—H81.0000C27—C281.389 (4)
C8—C91.410 (5)C28—C291.390 (4)
C9—H91.0000C28—C321.511 (4)
C10—C111.401 (3)C29—H290.9500
C10—C151.397 (4)C29—C301.388 (4)
C11—H110.9500C30—C311.403 (4)
C11—C121.391 (4)C30—C331.510 (4)
C12—C131.391 (4)C31—H310.9500
C12—C161.510 (4)C32—H32A0.9800
C13—H130.9500C32—H32B0.9800
C13—C141.387 (4)C32—H32C0.9800
C14—C151.396 (4)C33—H33A0.9800
C14—C171.509 (4)C33—H33B0.9800
C15—H150.9500C33—H33C0.9800
C1—Mo1—P1132.89 (8)C12—C11—C10121.1 (2)
C1—Mo1—C5140.69 (11)C12—C11—H11119.5
C1—Mo1—C6112.85 (11)C11—C12—C16121.3 (3)
C1—Mo1—C782.86 (11)C13—C12—C11118.5 (2)
C1—Mo1—C887.38 (11)C13—C12—C16120.2 (2)
C1—Mo1—C9120.95 (11)C12—C13—H13119.0
C3—Mo1—P181.30 (7)C14—C13—C12122.1 (2)
C3—Mo1—C177.3 (1)C14—C13—H13119.0
C3—Mo1—C5115.7 (1)C13—C14—C15118.5 (2)
C3—Mo1—C693.91 (11)C13—C14—C17121.1 (2)
C3—Mo1—C7105.47 (11)C15—C14—C17120.4 (3)
C3—Mo1—C8140.35 (11)C10—C15—H15119.5
C3—Mo1—C9150.13 (12)C14—C15—C10121.0 (2)
C4—Mo1—P178.21 (7)C14—C15—H15119.5
C4—Mo1—C170.1 (1)C12—C16—H16A109.5
C4—Mo1—C3108.9 (1)C12—C16—H16B109.5
C4—Mo1—C5129.63 (11)C12—C16—H16C109.5
C4—Mo1—C6156.82 (11)H16A—C16—H16B109.5
C4—Mo1—C7129.38 (11)H16A—C16—H16C109.5
C4—Mo1—C899.41 (11)H16B—C16—H16C109.5
C4—Mo1—C999.96 (11)C14—C17—H17A109.5
C5—Mo1—P186.42 (8)C14—C17—H17B109.5
C5—Mo1—C634.53 (11)C14—C17—H17C109.5
C6—Mo1—P1110.01 (8)H17A—C17—H17B109.5
C7—Mo1—P1143.68 (8)H17A—C17—H17C109.5
C7—Mo1—C558.19 (12)H17B—C17—H17C109.5
C7—Mo1—C635.18 (11)C19—C18—P1120.21 (19)
C7—Mo1—C958.63 (11)C19—C18—C23119.4 (2)
C8—Mo1—P1132.52 (9)C23—C18—P1120.29 (19)
C8—Mo1—C558.43 (12)C18—C19—H19119.6
C8—Mo1—C658.71 (11)C18—C19—C20120.8 (2)
C8—Mo1—C735.64 (10)C20—C19—H19119.6
C8—Mo1—C935.21 (11)C19—C20—C24120.5 (3)
C9—Mo1—P197.80 (8)C21—C20—C19118.4 (2)
C9—Mo1—C534.96 (11)C21—C20—C24121.1 (3)
C9—Mo1—C658.10 (11)C20—C21—H21118.8
C10—P1—Mo1110.94 (8)C22—C21—C20122.4 (2)
C10—P1—C18102.31 (12)C22—C21—H21118.8
C10—P1—C26106.53 (11)C21—C22—C23118.2 (2)
C18—P1—Mo1118.64 (8)C21—C22—C25121.2 (2)
C26—P1—Mo1115.73 (8)C23—C22—C25120.6 (2)
C26—P1—C18101.16 (11)C18—C23—C22120.9 (2)
O1—C1—Mo1120.0 (2)C18—C23—H23119.6
O1—C1—C2117.7 (3)C22—C23—H23119.6
C2—C1—Mo1122.3 (2)C20—C24—H24A109.5
C1—C2—H2A109.5C20—C24—H24B109.5
C1—C2—H2B109.5C20—C24—H24C109.5
C1—C2—H2C109.5H24A—C24—H24B109.5
H2A—C2—H2B109.5H24A—C24—H24C109.5
H2A—C2—H2C109.5H24B—C24—H24C109.5
H2B—C2—H2C109.5C22—C25—H25A109.5
O2—C3—Mo1173.4 (2)C22—C25—H25B109.5
O3—C4—Mo1174.9 (2)C22—C25—H25C109.5
Mo1—C5—H5125.6H25A—C25—H25B109.5
C6—C5—Mo173.04 (17)H25A—C25—H25C109.5
C6—C5—H5125.6H25B—C25—H25C109.5
C6—C5—C9108.5 (3)C27—C26—P1117.55 (19)
C9—C5—Mo171.54 (17)C27—C26—C31119.1 (2)
C9—C5—H5125.6C31—C26—P1123.34 (19)
Mo1—C6—H6126.1C26—C27—H27119.2
C5—C6—Mo172.42 (17)C28—C27—C26121.6 (2)
C5—C6—H6126.1C28—C27—H27119.2
C5—C6—C7107.5 (3)C27—C28—C29118.1 (2)
C7—C6—Mo170.52 (16)C27—C28—C32120.9 (3)
C7—C6—H6126.1C29—C28—C32120.9 (2)
Mo1—C7—H7125.8C28—C29—H29118.9
C6—C7—Mo174.29 (16)C30—C29—C28122.3 (2)
C6—C7—H7125.8C30—C29—H29118.9
C8—C7—Mo171.62 (16)C29—C30—C31118.4 (2)
C8—C7—C6108.0 (3)C29—C30—C33120.6 (2)
C8—C7—H7125.8C31—C30—C33121.0 (2)
Mo1—C8—H8125.8C26—C31—C30120.6 (2)
C7—C8—Mo172.74 (16)C26—C31—H31119.7
C7—C8—H8125.8C30—C31—H31119.7
C9—C8—Mo173.58 (16)C28—C32—H32A109.5
C9—C8—C7107.9 (3)C28—C32—H32B109.5
C9—C8—H8125.8C28—C32—H32C109.5
Mo1—C9—H9125.8H32A—C32—H32B109.5
C5—C9—Mo173.50 (16)H32A—C32—H32C109.5
C5—C9—H9125.8H32B—C32—H32C109.5
C8—C9—Mo171.22 (16)C30—C33—H33A109.5
C8—C9—C5108.1 (3)C30—C33—H33B109.5
C8—C9—H9125.8C30—C33—H33C109.5
C11—C10—P1120.06 (19)H33A—C33—H33B109.5
C15—C10—P1120.89 (19)H33A—C33—H33C109.5
C15—C10—C11118.8 (2)H33B—C33—H33C109.5
C10—C11—H11119.5
Mo1—P1—C10—C1158.8 (2)C12—C13—C14—C150.5 (4)
Mo1—P1—C10—C15115.2 (2)C12—C13—C14—C17178.9 (3)
Mo1—P1—C18—C1917.9 (2)C13—C14—C15—C100.1 (4)
Mo1—P1—C18—C23166.56 (18)C15—C10—C11—C120.8 (4)
Mo1—P1—C26—C2759.4 (2)C16—C12—C13—C14178.5 (3)
Mo1—P1—C26—C31122.65 (19)C17—C14—C15—C10179.4 (2)
Mo1—C5—C6—C762.2 (2)C18—P1—C10—C11173.7 (2)
Mo1—C5—C9—C863.3 (2)C18—P1—C10—C1512.3 (2)
Mo1—C6—C7—C864.2 (2)C18—P1—C26—C2770.2 (2)
Mo1—C7—C8—C965.7 (2)C18—P1—C26—C31107.8 (2)
Mo1—C8—C9—C564.8 (2)C18—C19—C20—C210.4 (4)
P1—C10—C11—C12174.91 (19)C18—C19—C20—C24179.6 (3)
P1—C10—C15—C14174.66 (19)C19—C18—C23—C220.3 (4)
P1—C18—C19—C20175.4 (2)C19—C20—C21—C220.9 (4)
P1—C18—C23—C22175.2 (2)C20—C21—C22—C231.1 (4)
P1—C26—C27—C28177.2 (2)C20—C21—C22—C25178.9 (3)
P1—C26—C31—C30177.09 (19)C21—C22—C23—C180.8 (4)
C5—C6—C7—Mo163.4 (2)C23—C18—C19—C200.2 (4)
C5—C6—C7—C80.8 (3)C24—C20—C21—C22179.1 (3)
C6—C5—C9—Mo164.2 (2)C25—C22—C23—C18179.2 (3)
C6—C5—C9—C80.9 (3)C26—P1—C10—C1168.0 (2)
C6—C7—C8—Mo165.9 (2)C26—P1—C10—C15118.0 (2)
C6—C7—C8—C90.2 (3)C26—P1—C18—C19145.6 (2)
C7—C8—C9—Mo165.2 (2)C26—P1—C18—C2338.8 (2)
C7—C8—C9—C50.4 (3)C26—C27—C28—C290.5 (4)
C9—C5—C6—Mo163.2 (2)C26—C27—C28—C32177.4 (3)
C9—C5—C6—C71.0 (3)C27—C26—C31—C300.8 (4)
C10—P1—C18—C19104.5 (2)C27—C28—C29—C301.9 (4)
C10—P1—C18—C2371.0 (2)C28—C29—C30—C311.8 (4)
C10—P1—C26—C27176.78 (19)C28—C29—C30—C33177.5 (3)
C10—P1—C26—C311.2 (2)C29—C30—C31—C260.4 (4)
C10—C11—C12—C130.3 (4)C31—C26—C27—C280.8 (4)
C10—C11—C12—C16179.2 (2)C32—C28—C29—C30176.1 (3)
C11—C10—C15—C140.6 (4)C33—C30—C31—C26178.9 (2)
C11—C12—C13—C140.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O3i0.982.653.234 (4)119
C33—H33B···O1ii0.982.553.349 (4)139
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

The authors acknowledge St Catherine University and NSF–MRI award No. 1125975 `MRI Consortium: Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Mol­ecular Structure Facility'. Additional support was provided by the NSF in the form of a CAREER award to MTW (CHE-1552591) and by Carleton College.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award Nos. 1125975, 1552591).

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChurchill, M. R. & Fennessey, J. P. (1968). Inorg. Chem. 7, 553–558.  Google Scholar
First citationGladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). Inorg. Chem. 18, 553–558.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhited, M. T., Bakker-Arkema, J. G., Greenwald, J. E., Morrill, L. A. & Janzen, D. E. (2013). Acta Cryst. E69, m475–m476.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWhited, M. T., Boerma, J. W., McClellan, M. J., Padilla, C. E. & Janzen, D. E. (2012). Acta Cryst. E68, m1158–m1159.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWhited, M. T. & Hofmeister, G. E. (2014). J. Chem. Educ. 91, 1050–1053.  Web of Science CrossRef CAS Google Scholar
First citationWhited, M. T., Hofmeister, G. E., Hodges, C. J., Jensen, L. T., Keyes, S. H., Ngamnithiporn, A. & Janzen, D. E. (2014). Acta Cryst. E70, 216–220.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds