organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-Bromo-S-(4-nitro­phen­yl)-S-phenyl­sulfimide

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
*Correspondence e-mail: by4ut6@bma.biglobe.ne.jp

Edited by H. Ishida, Okayama University, Japan (Received 30 November 2016; accepted 22 December 2016; online 6 January 2017)

The title compound, C12H9BrN2O2S, the first crystal structure of an N-halosulfimide, adopts a syn conformation about the S=N bond, with a Br—N—S—C(phen­yl) torsion angle of −54.64 (17)°. The dihedral angle between between the phenyl and 4-nitro­phenyl rings is 65.04 (14)°. In the crystal, mol­ecules are linked by C—H⋯Br, C—H⋯N and C—H⋯O inter­actions, forming a tape structure along the c axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The chemistry of N-halosulfimides (R,R′S=NX) has attracted much attention due to their unique structures and reactivities (Oae & Furukawa, 1983[Oae, S. & Furukawa, N. (1983). In Sulfilimines and Related Derivatives. Washington DC: American Chemical Society.]; Yoshimura et al., 1977[Yoshimura, T., Furukawa, N., Akasaka, T. & Oae, S. (1977). Tetrahedron, 33, 1061-1067.]; Kumar & Shreeve, 1981[Kumar, R. C. & Shreeve, J. M. (1981). J. Am. Chem. Soc. 103, 1951-1952.]; Aucott et al., 2004[Aucott, S. M., Bailey, M. R., Elsegood, M. R. J., Gilby, L. M., Holmes, K. E., Kelly, P. F., Papageorgiou, M. J. & Pedrón-Haba, S. (2004). New J. Chem. 28, 959-966.]). Previously, we have synthesized diar­yl(fluoro)-λ6-sulfane­nitriles by the reaction of S,S-diaryl-N-bromo­sulfimides with tetra­butyl­ammonium fluoride (Yoshimura et al., 1992[Yoshimura, T., Kita, H., Takeuchi, K., Takata, E., Hasegawa, K., Shimasaki, C. & Tsukurimichi, E. (1992). Chem. Lett. 21, 1433-1436.]) and also by the reaction of S,S-di­aryl­sulfimides using SelectfluorTM, an electrophilic fluorinating reagent, where the reaction proceeds via S,S-diaryl-N-fluoro­sulfimides as inter­mediates which undergo 1,2-migration of the F atom (Fujii et al., 2003[Fujii, T., Asai, S., Okada, T., Hao, W., Morita, H. & Yoshimura, T. (2003). Tetrahedron Lett. 44, 6203-6205.]). We have also performed DFT calculations using a model compound, S,S-dimethyl-N-fluoro­sulfimide, which showed that the syn conformer of N-fluoro­sulfimide is more stable than the anti one. In order to elucidate the mechanism of this 1,2-migration (retention or inversion), it is important to examine the structures of N-halosulfimides. However, the corresponding N-fluoro­sulfimides could not be isolated, and similar compounds of N-chloro­sulfimides are also unstable for X-ray analysis. The crystal structure of the title compound, N-bromo-S-(4-nitro­phen­yl)-S-phenyl­sulfimide, has now been successfully resolved.

The mol­ecular structure of the title compound was found to have a syn conformation, consistent with the prediction of the DFT calculation, as illustrated in Fig. 1[link]. In the crystal, the mol­ecules are linked through weak C3—H2⋯(N=Br) and C5—H3⋯O1 hydrogen bonds, forming a tape along the c axis (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H2⋯Br1i 0.95 2.86 3.598 (3) 135
C3—H2⋯N1i 0.95 2.44 3.286 (3) 149
C5—H3⋯O1ii 0.95 2.54 3.435 (3) 158
Symmetry codes: (i) x, y, z-1; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A partial packing diagram for the title compound with C—H⋯(N=Br) and C—H⋯O hydrogen bonds shown as blue dashed lines.

Synthesis and crystallization

The title compound was prepared by the method previously reported (Yoshimura et al., 1977[Yoshimura, T., Furukawa, N., Akasaka, T. & Oae, S. (1977). Tetrahedron, 33, 1061-1067.]) using S-(4-nitro­phen­yl)-S-phenyl­sulfimide mono hydrate and N-bromo­succinimide and crystallized from a benzene-hexane (1:1) solution (yield: 95%; m.p. 425–426 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H9BrN2O2S
Mr 325.18
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 9.12236 (10), 18.7734 (3), 7.70271 (10)
β (°) 108.576 (1)
V3) 1250.42 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.02
Crystal size (mm) 0.52 × 0.27 × 0.20
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.226, 0.300
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 14491, 2279, 2124
Rint 0.077
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.08
No. of reflections 2279
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.83, −0.40
Computer programs: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Structural data


Computing details top

Cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

N-Bromo-S-(4-nitrophenyl)-S-phenylsulfimide top
Crystal data top
C12H9BrN2O2SF(000) = 648.00
Mr = 325.18Dx = 1.727 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 13002 reflections
a = 9.12236 (10) Åθ = 4.7–68.3°
b = 18.7734 (3) ŵ = 6.02 mm1
c = 7.70271 (10) ÅT = 173 K
β = 108.576 (1)°Block, yellow
V = 1250.42 (3) Å30.52 × 0.27 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2124 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.077
ω scansθmax = 68.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.226, Tmax = 0.300k = 2122
14491 measured reflectionsl = 99
2279 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.2679P]
where P = (Fo2 + 2Fc2)/3
2279 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.40 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.91904 (3)0.032258 (15)0.74644 (3)0.04051 (15)
S10.64227 (7)0.07351 (3)0.43986 (8)0.03335 (18)
O10.6655 (3)0.22788 (11)0.0004 (3)0.0550 (6)
O20.7188 (3)0.15518 (13)0.1882 (3)0.0597 (6)
N10.7002 (3)0.05179 (12)0.6514 (3)0.0377 (5)
N20.6924 (3)0.16817 (13)0.0455 (3)0.0410 (6)
C10.6804 (3)0.00334 (13)0.2999 (4)0.0312 (5)
C20.6876 (3)0.01676 (14)0.1252 (4)0.0344 (6)
C30.6935 (3)0.03971 (13)0.0125 (4)0.0349 (6)
C40.6913 (3)0.10794 (14)0.0781 (4)0.0336 (6)
C50.6850 (3)0.12264 (14)0.2515 (4)0.0365 (6)
C60.6798 (3)0.06594 (14)0.3630 (4)0.0344 (6)
C70.7462 (3)0.14683 (13)0.3886 (3)0.0342 (6)
C80.6725 (4)0.21283 (15)0.3750 (4)0.0409 (6)
C90.7501 (4)0.27343 (15)0.3495 (4)0.0479 (7)
C100.8984 (4)0.26804 (16)0.3384 (4)0.0514 (8)
C110.9707 (4)0.20242 (15)0.3515 (4)0.0445 (7)
C120.8943 (3)0.14113 (15)0.3777 (4)0.0386 (6)
H10.68840.06440.08370.0413*
H20.69890.03170.10710.0418*
H30.68420.17030.29240.0438*
H40.67580.07420.48310.0413*
H50.57090.21610.38310.0490*
H60.70160.31870.33960.0575*
H70.95110.30980.32170.0617*
H81.07200.19930.34260.0534*
H90.94330.09590.38790.0464*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0399 (3)0.0421 (3)0.0385 (2)0.00127 (10)0.01095 (15)0.00459 (10)
S10.0334 (4)0.0342 (4)0.0354 (4)0.0022 (3)0.0151 (3)0.0019 (3)
O10.0734 (15)0.0357 (12)0.0560 (13)0.0016 (10)0.0207 (11)0.0056 (10)
O20.0776 (16)0.0631 (15)0.0474 (12)0.0027 (12)0.0324 (11)0.0130 (11)
N10.0408 (12)0.0407 (12)0.0363 (11)0.0022 (10)0.0188 (10)0.0024 (10)
N20.0373 (12)0.0461 (15)0.0375 (12)0.0036 (10)0.0089 (10)0.0066 (10)
C10.0275 (12)0.0327 (14)0.0335 (12)0.0007 (10)0.0098 (10)0.0004 (10)
C20.0346 (14)0.0356 (13)0.0336 (13)0.0014 (11)0.0115 (11)0.0063 (11)
C30.0318 (14)0.0434 (16)0.0305 (13)0.0026 (10)0.0115 (11)0.0019 (11)
C40.0286 (12)0.0382 (14)0.0331 (12)0.0013 (10)0.0088 (10)0.0041 (11)
C50.0382 (14)0.0343 (14)0.0368 (13)0.0001 (11)0.0118 (11)0.0034 (11)
C60.0356 (13)0.0381 (14)0.0315 (12)0.0011 (11)0.0134 (10)0.0042 (10)
C70.0413 (14)0.0311 (13)0.0305 (12)0.0003 (11)0.0118 (11)0.0015 (10)
C80.0477 (15)0.0413 (16)0.0317 (13)0.0083 (12)0.0099 (11)0.0017 (11)
C90.071 (2)0.0304 (15)0.0371 (14)0.0057 (14)0.0106 (13)0.0035 (12)
C100.070 (2)0.0410 (17)0.0407 (15)0.0135 (15)0.0141 (14)0.0054 (13)
C110.0498 (16)0.0425 (17)0.0418 (15)0.0083 (13)0.0153 (12)0.0024 (12)
C120.0436 (15)0.0349 (15)0.0384 (14)0.0010 (11)0.0145 (12)0.0032 (11)
Geometric parameters (Å, º) top
Br1—N11.930 (3)C7—C121.384 (4)
S1—N11.597 (3)C8—C91.387 (5)
S1—C11.805 (3)C9—C101.386 (6)
S1—C71.786 (3)C10—C111.386 (5)
O1—N21.223 (4)C11—C121.393 (5)
O2—N21.223 (4)C2—H10.950
N2—C41.480 (4)C3—H20.950
C1—C21.391 (4)C5—H30.950
C1—C61.389 (4)C6—H40.950
C2—C31.382 (4)C8—H50.950
C3—C41.379 (4)C9—H60.950
C4—C51.383 (4)C10—H70.950
C5—C61.378 (4)C11—H80.950
C7—C81.398 (4)C12—H90.950
N1—S1—C1111.02 (12)C9—C10—C11120.8 (3)
N1—S1—C7113.30 (11)C10—C11—C12119.8 (3)
C1—S1—C7102.33 (13)C7—C12—C11119.2 (3)
Br1—N1—S1113.69 (15)C1—C2—H1120.259
O1—N2—O2123.9 (3)C3—C2—H1120.266
O1—N2—C4118.1 (3)C2—C3—H2120.842
O2—N2—C4118.0 (3)C4—C3—H2120.860
S1—C1—C2121.54 (19)C4—C5—H3121.040
S1—C1—C6116.8 (2)C6—C5—H3121.047
C2—C1—C6121.0 (3)C1—C6—H4119.985
C1—C2—C3119.5 (3)C5—C6—H4119.995
C2—C3—C4118.3 (3)C7—C8—H5120.583
N2—C4—C3118.0 (3)C9—C8—H5120.577
N2—C4—C5118.7 (3)C8—C9—H6119.954
C3—C4—C5123.3 (3)C10—C9—H6119.951
C4—C5—C6117.9 (3)C9—C10—H7119.609
C1—C6—C5120.0 (3)C11—C10—H7119.611
S1—C7—C8115.0 (3)C10—C11—H8120.124
S1—C7—C12123.5 (2)C12—C11—H8120.123
C8—C7—C12121.3 (3)C7—C12—H9120.388
C7—C8—C9118.8 (3)C11—C12—H9120.396
C8—C9—C10120.1 (3)
N1—S1—C1—C2159.09 (16)C2—C1—C6—C50.6 (4)
N1—S1—C1—C630.08 (19)C6—C1—C2—C30.3 (4)
C1—S1—N1—Br159.86 (16)C1—C2—C3—C40.3 (4)
N1—S1—C7—C899.02 (16)C2—C3—C4—N2178.03 (19)
N1—S1—C7—C1275.8 (2)C2—C3—C4—C50.6 (4)
C7—S1—N1—Br154.64 (17)N2—C4—C5—C6178.29 (18)
C1—S1—C7—C8141.38 (14)C3—C4—C5—C60.4 (4)
C1—S1—C7—C1243.80 (19)C4—C5—C6—C10.2 (4)
C7—S1—C1—C237.90 (19)S1—C7—C8—C9175.13 (14)
C7—S1—C1—C6151.26 (15)S1—C7—C12—C11174.89 (15)
O1—N2—C4—C3168.46 (19)C8—C7—C12—C110.4 (4)
O1—N2—C4—C510.3 (3)C12—C7—C8—C90.2 (4)
O2—N2—C4—C310.9 (3)C7—C8—C9—C100.2 (4)
O2—N2—C4—C5170.3 (2)C8—C9—C10—C110.4 (4)
S1—C1—C2—C3170.17 (15)C9—C10—C11—C120.6 (4)
S1—C1—C6—C5170.33 (15)C10—C11—C12—C70.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H2···Br1i0.952.863.598 (3)135
C3—H2···N1i0.952.443.286 (3)149
C5—H3···O1ii0.952.543.435 (3)158
Symmetry codes: (i) x, y, z1; (ii) x, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Department of Applied Chemistry, Faculty of Engineering, University of Toyama, for the provision of laboratory facilities. They also acknowledge the University of Toyama for providing funds for single-crystal X-ray analyses.

Funding information

Funding for this research was provided by: Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports and Culture, Japan (award Nos. 09239218, 14044032); Japan Society for the Promotion of Science (award No. P11336).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAucott, S. M., Bailey, M. R., Elsegood, M. R. J., Gilby, L. M., Holmes, K. E., Kelly, P. F., Papageorgiou, M. J. & Pedrón-Haba, S. (2004). New J. Chem. 28, 959–966.  Web of Science CSD CrossRef CAS Google Scholar
First citationFujii, T., Asai, S., Okada, T., Hao, W., Morita, H. & Yoshimura, T. (2003). Tetrahedron Lett. 44, 6203–6205.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKumar, R. C. & Shreeve, J. M. (1981). J. Am. Chem. Soc. 103, 1951–1952.  CrossRef CAS Web of Science Google Scholar
First citationOae, S. & Furukawa, N. (1983). In Sulfilimines and Related Derivatives. Washington DC: American Chemical Society.  Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshimura, T., Furukawa, N., Akasaka, T. & Oae, S. (1977). Tetrahedron, 33, 1061–1067.  CrossRef Web of Science Google Scholar
First citationYoshimura, T., Kita, H., Takeuchi, K., Takata, E., Hasegawa, K., Shimasaki, C. & Tsukurimichi, E. (1992). Chem. Lett. 21, 1433–1436.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds