organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Phenyl­isoxazolin-5-one: a redetermination

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: essaghouani.hanine@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 January 2017; accepted 8 January 2017; online 13 January 2017)

The structure of the title mol­ecule, C9H7NO2, has been redetermined to improved precision and the H atoms located [Cannas et al. (1969[Cannas, M., Biagini, S. & Marongiu, G. (1969). Acta Cryst. B25, 1050-1056.]). Acta Cryst. B25, 1050]. The five-membered ring is almost planar (r.m.s. deviation = 0.006 Å) and subtends a dihedral angle of 2.45 (6)° with the benzene ring. In the crystal, mol­ecules form ribbons running parallel to the a-axis direction through a combination of C—H⋯N and C—H⋯O hydrogen bonds. `Stair-step' offset ππ stacking inter­actions are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isoxazole derivatives are employed in different areas of pharmaceuticals such as anti­fungal (Mares, et al., 2002[Mares, D., Romagnoli, C., Tosi, B., Benvegnù, R., Bruni, A. & Vicentini, C. B. (2002). Fungal Genet. Biol. 36, 47-57.]), anti­bacterial (Kwon, et al., 1995[Kwon, T., Heiman, A. S., Oriaku, E. T., Yoon, K. & Lee, H. J. (1995). J. Med. Chem. 38, 1048-1051.]), and anti-inflammatory agents (Panda, et al., 2009[Panda, S. S., Chowdary, P. V. R. & Jayashree, B. S. (2009). Indian J. Pharm. Sci. 71, 684-687.]).

In an attempt to prepare a different compound (shown in Fig. 1[link]), the title mol­ecule (Fig. 2[link]) was obtained instead. Noting that the original structure determination (Cannas et al., 1969[Cannas, M., Biagini, S. & Marongiu, G. (1969). Acta Cryst. B25, 1050-1056.]) cited in the Cambridge Crystallographic Database was performed at room temperature with film data (R1 = 0.108), we felt that a detailed report of the low temperature structure (R1 = 0.0338) of the title mol­ecule was warranted. The present determination decreases the s.u.s on the bond distances and bond angles to about one fourth to one sixth of those in the original determination as well as unambiguously locating and refining the hydrogen atoms. The mol­ecule is twisted about the C1⋯C4 axis by 2.45 (6)°, which is almost identical to the degree of twist found previously (2.45°).

[Figure 1]
Figure 1
The intended compound.
[Figure 2]
Figure 2
The title mol­ecule with 50% probability displacement ellipsoids.

In the crystal, a combination of pairwise C5—H5⋯N1ii [symmetry code: (ii) 1 − x, −y, 1 − z] and single C8—H8⋯O2iii [symmetry code: (iii) −1 + x, y, z] hydrogen bonds (Table 1[link] and Fig. 3[link]) form ribbons running parallel to the a direction and alternately inclined at 32.7 (1) and −32.7 (1)° to (001). This motif was noted in the earlier report but we find, in addition, that the ribbons are formed into `stair-step' stacks through complementary, offset ππ-stacking inter­actions between centrosymmetrically related six-membered and five-membered rings [centroid–centroid separation = 3.812 (1) Å, dihedral angle = 2.45 (6)°] (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N1i 0.995 (16) 2.602 (16) 3.5525 (17) 160.0 (12)
C5—H5⋯N1ii 0.991 (17) 2.55 (2) 3.438 (2) 149 (1)
C8—H8⋯O2iii 0.972 (18) 2.57 (2) 3.306 (2) 133 (1)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1; (iii) x-1, y, z.
[Figure 3]
Figure 3
The packing viewed along the a axis with C—H⋯N and C—H⋯O hydrogen bonds and ππ stacking inter­actions shown, respectively, as black, purple and orange dotted lines.

Synthesis and crystallization

A mixture of 4-phenyl-1,5-benzodiazepin-2-one (1.18 g, 5.0 mmol) and hydroxyl­amine hydro­chloride (0.86 g, 12.5 mmol) in anhydrous ethanol (40 ml) was stirred at room temperature for 24 h. The solvent was evaporated under reduced pressure. The resulted solid residue was recrystallized from ethanol solution to afford the title compound as orange crystals (yield: 65%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H7NO2
Mr 161.16
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 9.9869 (6), 5.3008 (3), 13.9874 (9)
β (°) 93.106 (2)
V3) 739.39 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.86
Crystal size (mm) 0.19 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.83, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 5465, 1433, 1282
Rint 0.029
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.10
No. of reflections 1433
No. of parameters 138
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.26, −0.14
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Phenylisoxazolin-5-one top
Crystal data top
C9H7NO2F(000) = 336
Mr = 161.16Dx = 1.448 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 9.9869 (6) ÅCell parameters from 4379 reflections
b = 5.3008 (3) Åθ = 5.6–72.1°
c = 13.9874 (9) ŵ = 0.86 mm1
β = 93.106 (2)°T = 150 K
V = 739.39 (8) Å3Plate, orange
Z = 40.19 × 0.12 × 0.06 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
1433 independent reflections
Radiation source: INCOATEC IµS micro-focus source1282 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4167 pixels mm-1θmax = 72.1°, θmin = 5.3°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 65
Tmin = 0.83, Tmax = 0.95l = 1717
5465 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034All H-atom parameters refined
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.1913P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1433 reflectionsΔρmax = 0.26 e Å3
138 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0097 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72988 (8)0.35740 (17)0.61102 (6)0.0291 (3)
O20.83139 (9)0.67872 (19)0.68908 (7)0.0345 (3)
N10.59421 (10)0.2725 (2)0.59036 (8)0.0276 (3)
C10.51416 (12)0.4307 (2)0.62725 (8)0.0219 (3)
C20.58547 (12)0.6434 (2)0.67731 (9)0.0254 (3)
H2A0.5637 (15)0.811 (3)0.6485 (11)0.033 (4)*
H2B0.5708 (16)0.650 (3)0.7461 (12)0.036 (4)*
C30.72877 (12)0.5762 (2)0.66339 (9)0.0260 (3)
C40.36809 (12)0.3949 (2)0.61691 (8)0.0223 (3)
C50.31305 (13)0.1913 (2)0.56468 (9)0.0270 (3)
H50.3730 (16)0.070 (3)0.5343 (11)0.037 (4)*
C60.17523 (13)0.1648 (3)0.55302 (9)0.0308 (3)
H60.1396 (18)0.020 (4)0.5152 (13)0.050 (5)*
C70.09063 (13)0.3393 (3)0.59296 (9)0.0297 (3)
H70.0084 (17)0.321 (3)0.5830 (11)0.035 (4)*
C80.14499 (13)0.5399 (3)0.64548 (9)0.0293 (3)
H80.0864 (18)0.661 (3)0.6743 (12)0.043 (4)*
C90.28324 (12)0.5680 (2)0.65752 (9)0.0258 (3)
H90.3184 (16)0.708 (3)0.6934 (11)0.037 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0220 (4)0.0294 (5)0.0360 (5)0.0020 (3)0.0029 (4)0.0048 (4)
O20.0227 (5)0.0418 (6)0.0390 (5)0.0033 (4)0.0001 (4)0.0054 (4)
N10.0234 (5)0.0263 (6)0.0329 (6)0.0000 (4)0.0018 (4)0.0038 (4)
C10.0237 (6)0.0192 (6)0.0228 (5)0.0013 (4)0.0010 (4)0.0023 (5)
C20.0218 (6)0.0232 (6)0.0311 (6)0.0008 (5)0.0001 (5)0.0028 (5)
C30.0240 (6)0.0280 (6)0.0259 (6)0.0007 (5)0.0014 (5)0.0009 (5)
C40.0242 (6)0.0204 (6)0.0221 (6)0.0006 (4)0.0001 (4)0.0028 (5)
C50.0294 (6)0.0230 (6)0.0285 (6)0.0005 (5)0.0004 (5)0.0008 (5)
C60.0315 (7)0.0289 (7)0.0313 (7)0.0070 (5)0.0036 (5)0.0008 (5)
C70.0247 (6)0.0337 (7)0.0305 (6)0.0036 (5)0.0014 (5)0.0060 (5)
C80.0248 (6)0.0306 (7)0.0328 (7)0.0023 (5)0.0033 (5)0.0018 (6)
C90.0252 (6)0.0238 (6)0.0284 (6)0.0003 (5)0.0011 (5)0.0012 (5)
Geometric parameters (Å, º) top
O1—C31.3720 (16)C4—C51.3990 (17)
O1—N11.4420 (13)C5—C61.3843 (18)
O2—C31.1980 (16)C5—H50.991 (17)
N1—C11.2857 (16)C6—C71.390 (2)
C1—C41.4704 (16)C6—H60.988 (19)
C1—C21.4881 (17)C7—C81.386 (2)
C2—C31.4977 (16)C7—H70.995 (16)
C2—H2A0.995 (16)C8—C91.3899 (17)
C2—H2B0.981 (16)C8—H80.972 (18)
C4—C91.3913 (17)C9—H90.952 (17)
C3—O1—N1109.63 (8)C5—C4—C1120.71 (11)
C1—N1—O1108.30 (10)C6—C5—C4119.98 (12)
N1—C1—C4120.76 (11)C6—C5—H5120.2 (9)
N1—C1—C2113.00 (10)C4—C5—H5119.8 (9)
C4—C1—C2126.23 (10)C5—C6—C7120.49 (12)
C1—C2—C3101.24 (10)C5—C6—H6118.0 (11)
C1—C2—H2A113.4 (9)C7—C6—H6121.5 (11)
C3—C2—H2A110.5 (9)C8—C7—C6119.61 (12)
C1—C2—H2B113.2 (9)C8—C7—H7120.3 (9)
C3—C2—H2B109.3 (9)C6—C7—H7120.1 (9)
H2A—C2—H2B109.0 (13)C7—C8—C9120.30 (12)
O2—C3—O1120.81 (11)C7—C8—H8120.1 (10)
O2—C3—C2131.38 (12)C9—C8—H8119.6 (10)
O1—C3—C2107.81 (10)C8—C9—C4120.18 (12)
C9—C4—C5119.43 (11)C8—C9—H9118.9 (9)
C9—C4—C1119.84 (11)C4—C9—H9120.9 (10)
C3—O1—N1—C10.43 (13)N1—C1—C4—C51.60 (17)
O1—N1—C1—C4179.36 (9)C2—C1—C4—C5177.44 (11)
O1—N1—C1—C20.20 (14)C9—C4—C5—C60.62 (18)
N1—C1—C2—C30.68 (14)C1—C4—C5—C6177.90 (11)
C4—C1—C2—C3179.79 (11)C4—C5—C6—C70.07 (19)
N1—O1—C3—O2179.42 (11)C5—C6—C7—C80.5 (2)
N1—O1—C3—C20.86 (13)C6—C7—C8—C90.56 (19)
C1—C2—C3—O2179.41 (14)C7—C8—C9—C40.01 (19)
C1—C2—C3—O10.91 (12)C5—C4—C9—C80.58 (18)
N1—C1—C4—C9179.89 (11)C1—C4—C9—C8177.95 (11)
C2—C1—C4—C91.07 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N1i0.995 (16)2.602 (16)3.5525 (17)160.0 (12)
C5—H5···N1ii0.991 (17)2.55 (2)3.438 (2)149 (1)
C8—H8···O2iii0.972 (18)2.57 (2)3.306 (2)133 (1)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x1, y, z.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannas, M., Biagini, S. & Marongiu, G. (1969). Acta Cryst. B25, 1050–1056.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationKwon, T., Heiman, A. S., Oriaku, E. T., Yoon, K. & Lee, H. J. (1995). J. Med. Chem. 38, 1048–1051.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMares, D., Romagnoli, C., Tosi, B., Benvegnù, R., Bruni, A. & Vicentini, C. B. (2002). Fungal Genet. Biol. 36, 47–57.  Web of Science CrossRef CAS Google Scholar
First citationPanda, S. S., Chowdary, P. V. R. & Jayashree, B. S. (2009). Indian J. Pharm. Sci. 71, 684–687.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds