organic compounds
3-Phenylisoxazolin-5-one: a redetermination
aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: essaghouani.hanine@gmail.com
The structure of the title molecule, C9H7NO2, has been redetermined to improved precision and the H atoms located [Cannas et al. (1969). Acta Cryst. B25, 1050]. The five-membered ring is almost planar (r.m.s. deviation = 0.006 Å) and subtends a dihedral angle of 2.45 (6)° with the benzene ring. In the crystal, molecules form ribbons running parallel to the a-axis direction through a combination of C—H⋯N and C—H⋯O hydrogen bonds. `Stair-step' offset π–π stacking interactions are also observed.
Keywords: crystal structure; isoxazolinone; hydrogen bonds; π–π stacking.
CCDC reference: 1526138
Structure description
Isoxazole derivatives are employed in different areas of pharmaceuticals such as antifungal (Mares, et al., 2002), antibacterial (Kwon, et al., 1995), and anti-inflammatory agents (Panda, et al., 2009).
In an attempt to prepare a different compound (shown in Fig. 1), the title molecule (Fig. 2) was obtained instead. Noting that the original (Cannas et al., 1969) cited in the Cambridge Crystallographic Database was performed at room temperature with film data (R1 = 0.108), we felt that a detailed report of the low temperature structure (R1 = 0.0338) of the title molecule was warranted. The present determination decreases the s.u.s on the bond distances and bond angles to about one fourth to one sixth of those in the original determination as well as unambiguously locating and refining the hydrogen atoms. The molecule is twisted about the C1⋯C4 axis by 2.45 (6)°, which is almost identical to the degree of twist found previously (2.45°).
In the crystal, a combination of pairwise C5—H5⋯N1ii [symmetry code: (ii) 1 − x, −y, 1 − z] and single C8—H8⋯O2iii [symmetry code: (iii) −1 + x, y, z] hydrogen bonds (Table 1 and Fig. 3) form ribbons running parallel to the a direction and alternately inclined at 32.7 (1) and −32.7 (1)° to (001). This motif was noted in the earlier report but we find, in addition, that the ribbons are formed into `stair-step' stacks through complementary, offset π–π-stacking interactions between centrosymmetrically related six-membered and five-membered rings [centroid–centroid separation = 3.812 (1) Å, dihedral angle = 2.45 (6)°] (Fig. 2).
Synthesis and crystallization
A mixture of 4-phenyl-1,5-benzodiazepin-2-one (1.18 g, 5.0 mmol) and hydroxylamine hydrochloride (0.86 g, 12.5 mmol) in anhydrous ethanol (40 ml) was stirred at room temperature for 24 h. The solvent was evaporated under reduced pressure. The resulted solid residue was recrystallized from ethanol solution to afford the title compound as orange crystals (yield: 65%).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1526138
https://doi.org/10.1107/S2414314617000323/hb4110sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617000323/hb4110Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617000323/hb4110Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617000323/hb4110Isup4.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617000323/hb4110Isup5.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617000323/hb4110Isup6.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C9H7NO2 | F(000) = 336 |
Mr = 161.16 | Dx = 1.448 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 9.9869 (6) Å | Cell parameters from 4379 reflections |
b = 5.3008 (3) Å | θ = 5.6–72.1° |
c = 13.9874 (9) Å | µ = 0.86 mm−1 |
β = 93.106 (2)° | T = 150 K |
V = 739.39 (8) Å3 | Plate, orange |
Z = 4 | 0.19 × 0.12 × 0.06 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 1433 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 1282 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.029 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.1°, θmin = 5.3° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −6→5 |
Tmin = 0.83, Tmax = 0.95 | l = −17→17 |
5465 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | All H-atom parameters refined |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0441P)2 + 0.1913P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
1433 reflections | Δρmax = 0.26 e Å−3 |
138 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0097 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.72988 (8) | 0.35740 (17) | 0.61102 (6) | 0.0291 (3) | |
O2 | 0.83139 (9) | 0.67872 (19) | 0.68908 (7) | 0.0345 (3) | |
N1 | 0.59421 (10) | 0.2725 (2) | 0.59036 (8) | 0.0276 (3) | |
C1 | 0.51416 (12) | 0.4307 (2) | 0.62725 (8) | 0.0219 (3) | |
C2 | 0.58547 (12) | 0.6434 (2) | 0.67731 (9) | 0.0254 (3) | |
H2A | 0.5637 (15) | 0.811 (3) | 0.6485 (11) | 0.033 (4)* | |
H2B | 0.5708 (16) | 0.650 (3) | 0.7461 (12) | 0.036 (4)* | |
C3 | 0.72877 (12) | 0.5762 (2) | 0.66339 (9) | 0.0260 (3) | |
C4 | 0.36809 (12) | 0.3949 (2) | 0.61691 (8) | 0.0223 (3) | |
C5 | 0.31305 (13) | 0.1913 (2) | 0.56468 (9) | 0.0270 (3) | |
H5 | 0.3730 (16) | 0.070 (3) | 0.5343 (11) | 0.037 (4)* | |
C6 | 0.17523 (13) | 0.1648 (3) | 0.55302 (9) | 0.0308 (3) | |
H6 | 0.1396 (18) | 0.020 (4) | 0.5152 (13) | 0.050 (5)* | |
C7 | 0.09063 (13) | 0.3393 (3) | 0.59296 (9) | 0.0297 (3) | |
H7 | −0.0084 (17) | 0.321 (3) | 0.5830 (11) | 0.035 (4)* | |
C8 | 0.14499 (13) | 0.5399 (3) | 0.64548 (9) | 0.0293 (3) | |
H8 | 0.0864 (18) | 0.661 (3) | 0.6743 (12) | 0.043 (4)* | |
C9 | 0.28324 (12) | 0.5680 (2) | 0.65752 (9) | 0.0258 (3) | |
H9 | 0.3184 (16) | 0.708 (3) | 0.6934 (11) | 0.037 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0220 (4) | 0.0294 (5) | 0.0360 (5) | 0.0020 (3) | 0.0029 (4) | −0.0048 (4) |
O2 | 0.0227 (5) | 0.0418 (6) | 0.0390 (5) | −0.0033 (4) | 0.0001 (4) | −0.0054 (4) |
N1 | 0.0234 (5) | 0.0263 (6) | 0.0329 (6) | 0.0000 (4) | 0.0018 (4) | −0.0038 (4) |
C1 | 0.0237 (6) | 0.0192 (6) | 0.0228 (5) | 0.0013 (4) | 0.0010 (4) | 0.0023 (5) |
C2 | 0.0218 (6) | 0.0232 (6) | 0.0311 (6) | 0.0008 (5) | 0.0001 (5) | −0.0028 (5) |
C3 | 0.0240 (6) | 0.0280 (6) | 0.0259 (6) | 0.0007 (5) | 0.0014 (5) | 0.0009 (5) |
C4 | 0.0242 (6) | 0.0204 (6) | 0.0221 (6) | −0.0006 (4) | 0.0001 (4) | 0.0028 (5) |
C5 | 0.0294 (6) | 0.0230 (6) | 0.0285 (6) | −0.0005 (5) | 0.0004 (5) | −0.0008 (5) |
C6 | 0.0315 (7) | 0.0289 (7) | 0.0313 (7) | −0.0070 (5) | −0.0036 (5) | −0.0008 (5) |
C7 | 0.0247 (6) | 0.0337 (7) | 0.0305 (6) | −0.0036 (5) | −0.0014 (5) | 0.0060 (5) |
C8 | 0.0248 (6) | 0.0306 (7) | 0.0328 (7) | 0.0023 (5) | 0.0033 (5) | 0.0018 (6) |
C9 | 0.0252 (6) | 0.0238 (6) | 0.0284 (6) | 0.0003 (5) | 0.0011 (5) | −0.0012 (5) |
O1—C3 | 1.3720 (16) | C4—C5 | 1.3990 (17) |
O1—N1 | 1.4420 (13) | C5—C6 | 1.3843 (18) |
O2—C3 | 1.1980 (16) | C5—H5 | 0.991 (17) |
N1—C1 | 1.2857 (16) | C6—C7 | 1.390 (2) |
C1—C4 | 1.4704 (16) | C6—H6 | 0.988 (19) |
C1—C2 | 1.4881 (17) | C7—C8 | 1.386 (2) |
C2—C3 | 1.4977 (16) | C7—H7 | 0.995 (16) |
C2—H2A | 0.995 (16) | C8—C9 | 1.3899 (17) |
C2—H2B | 0.981 (16) | C8—H8 | 0.972 (18) |
C4—C9 | 1.3913 (17) | C9—H9 | 0.952 (17) |
C3—O1—N1 | 109.63 (8) | C5—C4—C1 | 120.71 (11) |
C1—N1—O1 | 108.30 (10) | C6—C5—C4 | 119.98 (12) |
N1—C1—C4 | 120.76 (11) | C6—C5—H5 | 120.2 (9) |
N1—C1—C2 | 113.00 (10) | C4—C5—H5 | 119.8 (9) |
C4—C1—C2 | 126.23 (10) | C5—C6—C7 | 120.49 (12) |
C1—C2—C3 | 101.24 (10) | C5—C6—H6 | 118.0 (11) |
C1—C2—H2A | 113.4 (9) | C7—C6—H6 | 121.5 (11) |
C3—C2—H2A | 110.5 (9) | C8—C7—C6 | 119.61 (12) |
C1—C2—H2B | 113.2 (9) | C8—C7—H7 | 120.3 (9) |
C3—C2—H2B | 109.3 (9) | C6—C7—H7 | 120.1 (9) |
H2A—C2—H2B | 109.0 (13) | C7—C8—C9 | 120.30 (12) |
O2—C3—O1 | 120.81 (11) | C7—C8—H8 | 120.1 (10) |
O2—C3—C2 | 131.38 (12) | C9—C8—H8 | 119.6 (10) |
O1—C3—C2 | 107.81 (10) | C8—C9—C4 | 120.18 (12) |
C9—C4—C5 | 119.43 (11) | C8—C9—H9 | 118.9 (9) |
C9—C4—C1 | 119.84 (11) | C4—C9—H9 | 120.9 (10) |
C3—O1—N1—C1 | 0.43 (13) | N1—C1—C4—C5 | −1.60 (17) |
O1—N1—C1—C4 | 179.36 (9) | C2—C1—C4—C5 | 177.44 (11) |
O1—N1—C1—C2 | 0.20 (14) | C9—C4—C5—C6 | 0.62 (18) |
N1—C1—C2—C3 | −0.68 (14) | C1—C4—C5—C6 | −177.90 (11) |
C4—C1—C2—C3 | −179.79 (11) | C4—C5—C6—C7 | −0.07 (19) |
N1—O1—C3—O2 | 179.42 (11) | C5—C6—C7—C8 | −0.5 (2) |
N1—O1—C3—C2 | −0.86 (13) | C6—C7—C8—C9 | 0.56 (19) |
C1—C2—C3—O2 | −179.41 (14) | C7—C8—C9—C4 | −0.01 (19) |
C1—C2—C3—O1 | 0.91 (12) | C5—C4—C9—C8 | −0.58 (18) |
N1—C1—C4—C9 | 179.89 (11) | C1—C4—C9—C8 | 177.95 (11) |
C2—C1—C4—C9 | −1.07 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···N1i | 0.995 (16) | 2.602 (16) | 3.5525 (17) | 160.0 (12) |
C5—H5···N1ii | 0.991 (17) | 2.55 (2) | 3.438 (2) | 149 (1) |
C8—H8···O2iii | 0.972 (18) | 2.57 (2) | 3.306 (2) | 133 (1) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1; (iii) x−1, y, z. |
Acknowledgements
The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cannas, M., Biagini, S. & Marongiu, G. (1969). Acta Cryst. B25, 1050–1056. CSD CrossRef IUCr Journals Web of Science Google Scholar
Kwon, T., Heiman, A. S., Oriaku, E. T., Yoon, K. & Lee, H. J. (1995). J. Med. Chem. 38, 1048–1051. CrossRef CAS PubMed Web of Science Google Scholar
Mares, D., Romagnoli, C., Tosi, B., Benvegnù, R., Bruni, A. & Vicentini, C. B. (2002). Fungal Genet. Biol. 36, 47–57. Web of Science CrossRef CAS Google Scholar
Panda, S. S., Chowdary, P. V. R. & Jayashree, B. S. (2009). Indian J. Pharm. Sci. 71, 684–687. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.