organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Cyclo­hexyl-3-[(3,5-di­methyl-1H-pyrazol-1-yl)meth­yl]-4,5-di­hydro-1H-1,2,4-triazole-5-thione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ePharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, 71515 Assiut, Egypt, fFaculty of Pharmacy, Medicinal Chemistry Department, Assiut University, Assiut 71526, Egypt, and gChemistry Department, College of Education, Salahaddin University-Hawler, Erbil, Kurdistan Region, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 January 2017; accepted 4 January 2017; online 13 January 2017)

In the title compound, C14H21N5S, the dihedral angle between the triazole ring and the pyrazole ring is 88.16 (7)°. The cyclo­hexyl ring is disordered over two chair conformations in a 0.720 (3):0.280 (3) ratio. In the crystal, the mol­ecules are linked by N—H⋯N hydrogen bonds to generate C(7) chains propagating in [001]. The chains are cross-linked by very weak C—H⋯S hydrogen bonds to generate (100) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our ongoing studies of pyrazole derivatives (Mague et al., 2015[Mague, J. T., Mohamed, S. K., Akkurt, M. & Albayati, M. R. (2015). Acta Cryst. E71, o417.]), we report herein the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with 50% probability ellipsoids. Only the major component of the disordered cyclo­hexane ring is shown.

The dihedral angle between the mean planes of the triazole and pyrazole rings is 88.16 (7)°. The cyclo­hexyl ring is disordered over two chair conformations in a 0.720 (3):0.280 (3) ratio. In the crystal, the mol­ecules form (100) layers through a combination of N3—H3⋯N5i, C9—H9A⋯S1ii and C9—H9B⋯S1iii (symmetry codes: (1) x, −y + [{1\over 2}], z + [{1\over 2}]; (ii) x, −y + [{1\over 2}], z − [{1\over 2}]; (iii) x, −y + [{3\over 2}], z + [{1\over 2}]) hydrogen bonds (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N5i 0.90 (3) 1.91 (3) 2.805 (2) 175 (3)
C9—H9A⋯S1ii 0.96 (3) 2.93 (3) 3.766 (3) 147 (2)
C9—H9B⋯S1iii 0.98 (3) 2.88 (3) 3.761 (2) 151 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing viewed along the b axis. N—H⋯N and C—H⋯S hydrogen bonds are shown, respectively, as blue and black dotted lines.

Synthesis and crystallization

A solution of 1-[2-(3,5-dimethyl-1H-pyrazol-1-yl)acet­yl]-4-cyclo­hexyl thio­semicarbazides (1.23 g, 4 mmol) in ethanol (50 ml) was added dropwise to 2 N sodium hydroxide solution (20 ml). The reaction mixture was refluxed for 2 h, cooled and filtered. The filtrate was acidified with 2 N hydro­chloric acid solution. The separated solid was collected, washed with water and recrystallized from ethanol solution to yield colourless plates.

Refinement

Crystal and refinement details appear in Table 2[link]. The cyclo­hexyl group is disordered in a 72:28 ratio over two chair conformations related by an approximately 180° rotation about the N1—C3 bond. The two components were refined with restraints that their geometries be comparable.

Table 2
Experimental details

Crystal data
Chemical formula C14H21N5S
Mr 291.42
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 20.7954 (6), 6.2107 (2), 11.7871 (3)
β (°) 90.653 (1)
V3) 1522.25 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.87
Crystal size (mm) 0.34 × 0.19 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.83, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 11034, 2951, 2589
Rint 0.034
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.115, 1.05
No. of reflections 2951
No. of parameters 215
No. of restraints 13
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.65, −0.82
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL 2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL 2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-Cyclohexyl-3-[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-4,5-dihydro-1-H-1,2,4-triazole-5-thione top
Crystal data top
C14H21N5SF(000) = 624
Mr = 291.42Dx = 1.272 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 20.7954 (6) ÅCell parameters from 8361 reflections
b = 6.2107 (2) Åθ = 4.3–72.4°
c = 11.7871 (3) ŵ = 1.87 mm1
β = 90.653 (1)°T = 150 K
V = 1522.25 (8) Å3Plate, colourless
Z = 40.34 × 0.19 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2951 independent reflections
Radiation source: INCOATEC IµS micro–focus source2589 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 4.3°
ω scansh = 2525
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 77
Tmin = 0.83, Tmax = 0.97l = 1414
11034 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0372P)2 + 1.6394P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2951 reflectionsΔρmax = 0.65 e Å3
215 parametersΔρmin = 0.82 e Å3
13 restraintsExtinction correction: SHELXL 2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H-atoms of the methyl groups and the disordered cyclohexyl group were placed in calculated positions (C—H = 0.98 - 1.00 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The cyclohexyl group is disordered in a 72:28 ratio over two chair conformations related by an approximately 180° rotation about the N1—C3 bond. The two components were refined with restraints that their geometries be comparable.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.81796 (3)0.38503 (9)0.90485 (5)0.03905 (19)
N10.78874 (8)0.5335 (3)0.68895 (14)0.0306 (4)
N20.68920 (8)0.4124 (3)0.66233 (13)0.0288 (4)
N30.71376 (8)0.3535 (3)0.76686 (14)0.0294 (4)
H30.6906 (13)0.264 (5)0.810 (2)0.051 (8)*
N40.66611 (9)0.6146 (3)0.45832 (13)0.0299 (4)
N50.64407 (8)0.4451 (3)0.39492 (13)0.0288 (4)
C10.77356 (10)0.4235 (3)0.78605 (17)0.0297 (4)
C20.73585 (9)0.5221 (3)0.61729 (16)0.0281 (4)
C3A0.85297 (11)0.6382 (5)0.6856 (2)0.0252 (6)0.720 (3)
H3A0.88080.57060.74540.030*0.720 (3)
C4A0.88585 (13)0.6111 (4)0.5723 (2)0.0277 (6)0.720 (3)
H4A10.86080.68500.51190.033*0.720 (3)
H4A20.88890.45640.55270.033*0.720 (3)
C5A0.9536 (2)0.7096 (8)0.5823 (7)0.0329 (6)0.720 (3)
H5A10.97910.62860.63940.039*0.720 (3)
H5A20.97550.69730.50850.039*0.720 (3)
C6A0.95014 (14)0.9463 (5)0.6170 (3)0.0322 (6)0.720 (3)
H6A10.99431.00310.62770.039*0.720 (3)
H6A20.92911.03000.55550.039*0.720 (3)
C7A0.91282 (15)0.9761 (6)0.7263 (3)0.0386 (9)0.720 (3)
H7A10.90921.13150.74380.046*0.720 (3)
H7A20.93620.90570.78980.046*0.720 (3)
C8A0.84542 (19)0.8779 (7)0.7143 (6)0.0279 (9)0.720 (3)
H8A10.82100.95200.65320.033*0.720 (3)
H8A20.82170.89470.78610.033*0.720 (3)
C3B0.8402 (2)0.6828 (9)0.6466 (6)0.0252 (6)0.280 (3)
H3B0.82590.74260.57170.030*0.280 (3)
C4B0.9015 (3)0.5558 (9)0.6290 (7)0.0277 (6)0.280 (3)
H4B10.89350.43950.57320.033*0.280 (3)
H4B20.91510.48860.70160.033*0.280 (3)
C5B0.9551 (5)0.703 (2)0.5861 (16)0.0329 (6)0.280 (3)
H5B10.99510.61910.57710.039*0.280 (3)
H5B20.94270.76260.51100.039*0.280 (3)
C6B0.9673 (3)0.8887 (11)0.6694 (7)0.0322 (6)0.280 (3)
H6B10.98200.83060.74350.039*0.280 (3)
H6B21.00130.98420.63990.039*0.280 (3)
C7B0.9054 (3)1.0165 (10)0.6848 (8)0.0386 (9)0.280 (3)
H7B10.89201.08050.61130.046*0.280 (3)
H7B20.91311.13530.73930.046*0.280 (3)
C8B0.8516 (5)0.8710 (18)0.7286 (15)0.0279 (9)0.280 (3)
H8B10.81150.95550.73610.033*0.280 (3)
H8B20.86370.81460.80450.033*0.280 (3)
C90.73190 (11)0.6154 (4)0.50055 (17)0.0335 (5)
H9A0.7575 (12)0.531 (4)0.450 (2)0.040 (7)*
H9B0.7465 (12)0.765 (5)0.502 (2)0.049 (7)*
C100.61843 (12)0.7525 (3)0.48504 (17)0.0371 (5)
C110.56341 (12)0.6719 (4)0.43495 (19)0.0408 (5)
H110.52160.73300.43700.049*
C120.58160 (10)0.4813 (3)0.38033 (16)0.0322 (5)
C130.63050 (16)0.9470 (4)0.5565 (2)0.0550 (7)
H13A0.66621.02980.52490.083*
H13B0.64150.90230.63410.083*
H13C0.59171.03660.55750.083*
C140.54153 (11)0.3250 (4)0.3135 (2)0.0436 (6)
H14A0.50540.40120.27780.065*
H14B0.52510.21340.36430.065*
H14C0.56790.25820.25480.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0416 (3)0.0356 (3)0.0395 (3)0.0083 (2)0.0179 (2)0.0107 (2)
N10.0252 (8)0.0328 (9)0.0339 (9)0.0084 (7)0.0007 (7)0.0110 (7)
N20.0313 (9)0.0318 (9)0.0230 (8)0.0086 (7)0.0048 (6)0.0040 (7)
N30.0313 (9)0.0328 (9)0.0240 (8)0.0045 (7)0.0065 (7)0.0030 (7)
N40.0439 (10)0.0247 (9)0.0212 (8)0.0062 (7)0.0003 (7)0.0013 (6)
N50.0377 (9)0.0260 (8)0.0227 (8)0.0044 (7)0.0013 (7)0.0036 (7)
C10.0310 (10)0.0274 (10)0.0307 (10)0.0022 (8)0.0039 (8)0.0089 (8)
C20.0314 (10)0.0271 (10)0.0257 (9)0.0076 (8)0.0005 (7)0.0049 (8)
C3A0.0185 (12)0.0288 (14)0.0280 (17)0.0030 (10)0.0098 (10)0.0019 (11)
C4A0.0282 (13)0.0230 (13)0.0321 (16)0.0004 (10)0.0022 (11)0.0052 (11)
C5A0.0267 (10)0.0341 (12)0.0378 (12)0.0011 (9)0.0029 (9)0.0017 (10)
C6A0.0279 (14)0.0344 (16)0.0343 (17)0.0093 (12)0.0010 (12)0.0006 (12)
C7A0.0365 (15)0.0430 (18)0.036 (2)0.0149 (13)0.0011 (15)0.0158 (16)
C8A0.0307 (13)0.0267 (11)0.0263 (19)0.0035 (9)0.0038 (13)0.0061 (10)
C3B0.0185 (12)0.0288 (14)0.0280 (17)0.0030 (10)0.0098 (10)0.0019 (11)
C4B0.0282 (13)0.0230 (13)0.0321 (16)0.0004 (10)0.0022 (11)0.0052 (11)
C5B0.0267 (10)0.0341 (12)0.0378 (12)0.0011 (9)0.0029 (9)0.0017 (10)
C6B0.0279 (14)0.0344 (16)0.0343 (17)0.0093 (12)0.0010 (12)0.0006 (12)
C7B0.0365 (15)0.0430 (18)0.036 (2)0.0149 (13)0.0011 (15)0.0158 (16)
C8B0.0307 (13)0.0267 (11)0.0263 (19)0.0035 (9)0.0038 (13)0.0061 (10)
C90.0403 (12)0.0349 (12)0.0252 (10)0.0149 (9)0.0034 (8)0.0014 (8)
C100.0592 (14)0.0267 (11)0.0253 (10)0.0048 (10)0.0010 (9)0.0008 (8)
C110.0512 (13)0.0419 (13)0.0293 (11)0.0150 (11)0.0032 (9)0.0016 (9)
C120.0393 (11)0.0347 (11)0.0224 (9)0.0004 (9)0.0025 (8)0.0008 (8)
C130.090 (2)0.0327 (13)0.0417 (14)0.0082 (13)0.0048 (13)0.0115 (11)
C140.0403 (12)0.0544 (15)0.0358 (12)0.0051 (11)0.0074 (9)0.0073 (11)
Geometric parameters (Å, º) top
S1—C11.686 (2)C3B—C4B1.514 (4)
N1—C11.373 (3)C3B—C8B1.534 (5)
N1—C21.381 (3)C3B—H3B1.0000
N1—C3A1.487 (3)C4B—C5B1.534 (5)
N1—C3B1.506 (4)C4B—H4B10.9900
N2—C21.303 (2)C4B—H4B20.9900
N2—N31.378 (2)C5B—C6B1.532 (5)
N3—C11.334 (3)C5B—H5B10.9900
N3—H30.90 (3)C5B—H5B20.9900
N4—C101.350 (3)C6B—C7B1.525 (4)
N4—N51.367 (2)C6B—H6B10.9900
N4—C91.451 (3)C6B—H6B20.9900
N5—C121.328 (3)C7B—C8B1.531 (5)
C2—C91.495 (3)C7B—H7B10.9900
C3A—C4A1.516 (3)C7B—H7B20.9900
C3A—C8A1.536 (4)C8B—H8B10.9900
C3A—H3A1.0000C8B—H8B20.9900
C4A—C5A1.539 (4)C9—H9A0.96 (3)
C4A—H4A10.9900C9—H9B0.98 (3)
C4A—H4A20.9900C10—C111.376 (3)
C5A—C6A1.528 (4)C10—C131.492 (3)
C5A—H5A10.9900C11—C121.402 (3)
C5A—H5A20.9900C11—H110.9500
C6A—C7A1.523 (4)C12—C141.497 (3)
C6A—H6A10.9900C13—H13A0.9800
C6A—H6A20.9900C13—H13B0.9800
C7A—C8A1.533 (4)C13—H13C0.9800
C7A—H7A10.9900C14—H14A0.9800
C7A—H7A20.9900C14—H14B0.9800
C8A—H8A10.9900C14—H14C0.9800
C8A—H8A20.9900
C1—N1—C2107.18 (16)C4B—C3B—H3B108.4
C1—N1—C3A117.09 (18)C8B—C3B—H3B108.4
C2—N1—C3A135.69 (19)C3B—C4B—C5B110.5 (5)
C1—N1—C3B138.9 (3)C3B—C4B—H4B1109.6
C2—N1—C3B113.1 (3)C5B—C4B—H4B1109.6
C2—N2—N3103.48 (16)C3B—C4B—H4B2109.6
C1—N3—N2113.59 (17)C5B—C4B—H4B2109.6
C1—N3—H3127.6 (17)H4B1—C4B—H4B2108.1
N2—N3—H3118.4 (17)C6B—C5B—C4B110.7 (6)
C10—N4—N5111.93 (17)C6B—C5B—H5B1109.5
C10—N4—C9127.58 (18)C4B—C5B—H5B1109.5
N5—N4—C9119.98 (17)C6B—C5B—H5B2109.5
C12—N5—N4105.21 (17)C4B—C5B—H5B2109.5
N3—C1—N1104.10 (17)H5B1—C5B—H5B2108.1
N3—C1—S1126.53 (17)C7B—C6B—C5B109.5 (5)
N1—C1—S1129.36 (16)C7B—C6B—H6B1109.8
N2—C2—N1111.65 (17)C5B—C6B—H6B1109.8
N2—C2—C9122.99 (18)C7B—C6B—H6B2109.8
N1—C2—C9125.33 (17)C5B—C6B—H6B2109.8
N1—C3A—C4A112.9 (2)H6B1—C6B—H6B2108.2
N1—C3A—C8A108.9 (2)C6B—C7B—C8B110.7 (5)
C4A—C3A—C8A110.5 (3)C6B—C7B—H7B1109.5
N1—C3A—H3A108.1C8B—C7B—H7B1109.5
C4A—C3A—H3A108.1C6B—C7B—H7B2109.5
C8A—C3A—H3A108.1C8B—C7B—H7B2109.5
C3A—C4A—C5A108.1 (3)H7B1—C7B—H7B2108.1
C3A—C4A—H4A1110.1C7B—C8B—C3B110.2 (5)
C5A—C4A—H4A1110.1C7B—C8B—H8B1109.6
C3A—C4A—H4A2110.1C3B—C8B—H8B1109.6
C5A—C4A—H4A2110.1C7B—C8B—H8B2109.6
H4A1—C4A—H4A2108.4C3B—C8B—H8B2109.6
C6A—C5A—C4A110.9 (3)H8B1—C8B—H8B2108.1
C6A—C5A—H5A1109.4N4—C9—C2110.86 (16)
C4A—C5A—H5A1109.5N4—C9—H9A108.1 (15)
C6A—C5A—H5A2109.5C2—C9—H9A109.8 (15)
C4A—C5A—H5A2109.4N4—C9—H9B107.5 (15)
H5A1—C5A—H5A2108.0C2—C9—H9B109.7 (16)
C7A—C6A—C5A111.7 (3)H9A—C9—H9B111 (2)
C7A—C6A—H6A1109.3N4—C10—C11106.15 (19)
C5A—C6A—H6A1109.3N4—C10—C13121.7 (2)
C7A—C6A—H6A2109.3C11—C10—C13132.1 (2)
C5A—C6A—H6A2109.3C10—C11—C12106.1 (2)
H6A1—C6A—H6A2107.9C10—C11—H11127.0
C6A—C7A—C8A110.4 (3)C12—C11—H11127.0
C6A—C7A—H7A1109.6N5—C12—C11110.61 (19)
C8A—C7A—H7A1109.6N5—C12—C14119.78 (19)
C6A—C7A—H7A2109.6C11—C12—C14129.6 (2)
C8A—C7A—H7A2109.6C10—C13—H13A109.5
H7A1—C7A—H7A2108.1C10—C13—H13B109.5
C7A—C8A—C3A108.1 (3)H13A—C13—H13B109.5
C7A—C8A—H8A1110.1C10—C13—H13C109.5
C3A—C8A—H8A1110.1H13A—C13—H13C109.5
C7A—C8A—H8A2110.1H13B—C13—H13C109.5
C3A—C8A—H8A2110.1C12—C14—H14A109.5
H8A1—C8A—H8A2108.4C12—C14—H14B109.5
N1—C3B—C4B109.1 (4)H14A—C14—H14B109.5
N1—C3B—C8B111.5 (5)C12—C14—H14C109.5
C4B—C3B—C8B111.0 (5)H14A—C14—H14C109.5
N1—C3B—H3B108.4H14B—C14—H14C109.5
C2—N2—N3—C10.1 (2)N1—C3A—C8A—C7A172.4 (3)
C10—N4—N5—C121.2 (2)C4A—C3A—C8A—C7A63.0 (6)
C9—N4—N5—C12173.48 (17)C1—N1—C3B—C4B72.2 (7)
N2—N3—C1—N10.1 (2)C2—N1—C3B—C4B119.4 (4)
N2—N3—C1—S1179.05 (15)C1—N1—C3B—C8B50.7 (9)
C2—N1—C1—N30.3 (2)C2—N1—C3B—C8B117.7 (8)
C3A—N1—C1—N3178.24 (18)N1—C3B—C4B—C5B179.9 (8)
C3B—N1—C1—N3169.1 (4)C8B—C3B—C4B—C5B56.7 (10)
C2—N1—C1—S1178.83 (16)C3B—C4B—C5B—C6B57.6 (13)
C3A—N1—C1—S10.8 (3)C4B—C5B—C6B—C7B58.3 (13)
C3B—N1—C1—S110.0 (5)C5B—C6B—C7B—C8B58.5 (9)
N3—N2—C2—N10.3 (2)C6B—C7B—C8B—C3B57.8 (12)
N3—N2—C2—C9178.33 (19)N1—C3B—C8B—C7B178.6 (8)
C1—N1—C2—N20.4 (2)C4B—C3B—C8B—C7B56.7 (12)
C3A—N1—C2—N2177.8 (2)C10—N4—C9—C278.1 (3)
C3B—N1—C2—N2172.4 (3)N5—N4—C9—C292.9 (2)
C1—N1—C2—C9178.3 (2)N2—C2—C9—N414.3 (3)
C3A—N1—C2—C94.2 (4)N1—C2—C9—N4167.98 (18)
C3B—N1—C2—C99.6 (4)N5—N4—C10—C111.3 (2)
C1—N1—C3A—C4A138.3 (2)C9—N4—C10—C11172.90 (19)
C2—N1—C3A—C4A44.5 (4)N5—N4—C10—C13178.3 (2)
C1—N1—C3A—C8A98.6 (4)C9—N4—C10—C136.7 (3)
C2—N1—C3A—C8A78.6 (4)N4—C10—C11—C120.9 (2)
N1—C3A—C4A—C5A175.5 (4)C13—C10—C11—C12178.7 (2)
C8A—C3A—C4A—C5A62.2 (5)N4—N5—C12—C110.6 (2)
C3A—C4A—C5A—C6A57.5 (7)N4—N5—C12—C14179.97 (18)
C4A—C5A—C6A—C7A55.3 (7)C10—C11—C12—N50.2 (2)
C5A—C6A—C7A—C8A55.8 (6)C10—C11—C12—C14179.2 (2)
C6A—C7A—C8A—C3A58.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N5i0.90 (3)1.91 (3)2.805 (2)175 (3)
C9—H9A···S1ii0.96 (3)2.93 (3)3.766 (3)147 (2)
C9—H9B···S1iii0.98 (3)2.88 (3)3.761 (2)151 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M. & Albayati, M. R. (2015). Acta Cryst. E71, o417.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds